
Chapter  3
Characteristics of energy surfaces

3.1 Strategies for geometry optimization

The extension of the harmonic and Morse vibrational models to poly-
atomic molecules requires that the multidimensional energy surface be
analyzed in a manner that allows one to approximate the molecule,s mo-
tions in terms of many nearly independent vibrations. In this section, we
will explore the tools that one uses to carry out such an analysis of the
surface.

Many strategies that attempt to locate minima on nrolecular potential en-
ergy landscapes begin by approximating thc pcltential ener-sy V for gcornetries
(collectively denoted in terms of 3A cartesian coordinares {qr})in a Taylor se-
ries expansion about sonre "starting point" geometry (i.e.. the current nrolecular
geometry in an iterative process):

I ' ( q r ) :  I 1 ( 0 ) +  t ( a  r  l o q ^ ) q t  +  t l 2 l o  i H  i . * 4 *  * . . . .  ( 3 . 1 )

Here.  i ' (0) is theenergyu*,n.  lur r "nrreon. ]et ry ,  tU,  r , tO,^ l :  91 isrhe-eradientof
theenergyalongtheqa coordinate,  H1.s = e2 I /  ldq iaqk)  is thesecondder ivat ive
or Hessian matrix. and qa is the length of the "step" to be taken along this cartesian
direction. An example of an energy surface in only two dinrensions is given
in Fig. 3.1 where various special aspects are i l lustrated. For example. minima
corresponding to stable molecular structures, transition states (first order saddle
points) connecting such minima. and higher order saddle points are clisplayed.

If the only knowled-qe that is available is l'(0) and the gradient coruDonents
(e.g.. computation ofthe second derivatives is usually r.nuch more computationally
taxing than is evaluation of the gradient), the linear approxirnation

I ' ( q i ) :  r t t l )  +  f  S^q i  ( 3 .2 )

suggests that one should choose "step" elements q1 that are opposite in sign from
that of the corresponding gradient elements gr : (a vloqr). The magnitude of
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the step elements is usually kept small in order to remain within the "trust radius"
within which the linear approximarion to z is valid to some prederermined desired
precision.

when second derivative data is available, there are diIl-erent approaches to
predicting what step lqrl to take in search of a minimum. we first write the
quadratic Taylor expansion

I ' ( , t t t  =  I ' r 0 r  +  f  g ^ V r  -  l ,  2 l l ,  H , . + , t t
k  r . "

in matrix-vector notation

(  3 .3 )

t t ( q ) =  L , ( o ) + q r . g  +  t l 2 q r . H . q (3 .4 )

rvith the elements{q1 } collected into the column vector q whose transpose rs
denoted qr. Introducing the unitary matrix u that diagonalizes the symmetric H
matrix, the above equation becomes

rG):  I r (01+ gruurq + tT2qruurHuurq.  (3.5)

Because UrHU is diagonal,

( u rHu ) r1  : 8 r . r i r  ( 3 .6 )

and has eigenvalues )"a. For non-linear molecules, 3r/ - 6 of these eigenvalues
rvill be non-zero; for linear molecules, 3,A/ - 5 will be non-zero. The 5 or 6 zero
eigenvalues of H have eigenvectors that describe translation and rotation of the
entire molecule; they are zero because the energy surface z does not change if
the molecule is rotated or translated. The eigenvectors of H form the columns of
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the array U that brings H to diagonal lorm:

1 -1.7 )

Therefore. ifrve define

Q, : l L , [ , , , q r  and  G , : l L '  , ! ,  ^g r  ( i  8 )

to be the component of ,n.*r,"p {qp} and of tn. glual.nt along the rrth ergen-

vectorolH. the quadratic expansion of l, 'can be u'ritten in terms of steps along

the 3,\ - 5 or 3t/ - 6 {Q,,,} directions that correspond to non-zero Hessian

eigenvalues:

v(qt): r '(0) + t cl,e,, + 112Le,,,)",, ,e,,, .  (3.r.r1

The advantage to transforming tlie gradient, step. unO H.rrlun to the eigenmode

basis is that each such mode (labeled nr) appears in an independent uncoupled

form in the expansion of /. This allou's us to take steps along each of the Q,,,
directions in an independent manner with each step designed to lower the potential

ener-qy (as we search for rninima).
For each eigenmode direction, one can ask for u&at step p u'ould the quantity

G Q + I12 ),Q2 be a minimum. Differentiating this quadratic form with respect
to Q and setting the result equal to zero gives

Qr,  = -G, l ) ' r , ,  (3  10)

that is, or.re should take a step opposite the _eradient but with a rnagnitude given

by the gradient divided by the eigenvalue of the Hessian matrix. lf the current
molecular geometry is one that has all positive /.,,,values, this indicates that one
may be "close" to a minimum on the energy surface (because all i,,, are positive

at minima). In such a case, the step Q,,: -Gu,/i,,, is opposed to the gradient

along ali 3l/ - 5 or 31y' - 6 directions. The energy change that is expected to

occur if the step {p,,,} is taken can be computed by substituting p,, : -G,,/L,,

into the quadratic equation for /:

/(after step) : I, '(0) + | Cl1-C,, l\,,) * 1 l2LL,,,(-G,,, 1I,,,)2

:  r ( o ) -  r ) z ) -  ) . n , ( - -G , , , f ) , . , , ) 2 .  
" '  

, r . , , ,

This clearly suggests that the step will lead "downhill" in energy as long as all of
the ).,,, values are positive.

However, if one or more of the ),n, are negative at the current geometry'. one is
in a region of the energy surface that is not close to a minimum. In fact, if only one
),,, is negative, onq anticipates being near a transition state (at which all gradient

components vanish and ali but one .i.n, are positive with one i.o, negative). In such
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a case. the abor,'e analysis suggests takin_q a step 0/,r : -G,,/Ln, alone all of the
modes having positive ).,,,, but takin-e a step of opposite direction e,, J +G, 1).,
along the direction having negarive l,?.

In any event. once a step has been suggested within the eigenmode basis, one
needs to express that step in terms of the original cartesian coordinates q1 so
that these cartesian values can be altered within the software program to effect
the predicted step. Given values for the 3N - 5 or 3l/ - 6 stef components
Q,, @.b.. the step componenrs Q,,, alongthe 5 or 6 modes havinj zero Hessian
eigenvalues can be taken to be zero because they would simply translate or rotate
the molecule), one must compute the {q1,}. To do so, we use the relationshin

Q, : \u i ,  a1 r  (3 . r2 )

and "vrire its inverse (using the unitary nature of the u matrix):

q r : L ,L1 t . , , ,Q , , ,  ( 3 .1 i )

to compute the desired Cartesian step components.
In usi'g the Hessian-based approaches outl ined above. one has to take special

care when one or more of the Hessian ei-senvalues is small. This often happens
wnen:

(i) one has a molecuie containing "soft rnodes" (i.c., de_urees of t ieedom along lvhich
the energy r.aries l itt le). or

(i i) one moves frorn a region ofnegatir,c cur\arure into a region ofpositive cur'ature
(or vice versa) - in such cases, the cu.nature nlust move trrrough or near zero.

For these situations. the expressiofl e,,: -G,,/n,, can produce a yerv lar-9e
step along the mode having small curvature. care must be taken to not alrow
such incorrect arti l icially large steps to be taken.

Before closin-e this section. I should note that there are other i 'portant regions
of potential ener-qy surf-aces that one must be able to locate and characterize.
Above""ve fbcused on locar rninima a'cl transition states. In Chapter g, we wil l
discuss how to follow so-cailed reaction paths that connect these two krnds of
statlonary points using the type of gradient a'd Hessian information that ,"ve
introduced earlier in this chapter.

Finally. it is sometirnes importanr to find _qeomet'es at which two Born-
oppenheimer ener-qy surfaces I"1 (q) and z1(q.y intersect. First. ret's spend a fer.v
minutes thinking about whether such surfaces can rndeed intersect, because stu-
dents ofte' hear that surf'aces do not intersect but. insteacl undergo ..avoideci
crossings". To understand the issue, let us assume that we have two w.ve func_
ttons @1 and @2 both of rvhich depend on 3,v - 6 coordinates {q}. These two
ftrnctions are not assumed to be exact ei-eenfunctions of the Hamiltonian F1.
but l ikely are chosen to approximate such eigentunctions. To find the improved
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functions V1 and W2 that more accurately represent the eigenstates. one usually
forms linear combinations of (D 1 and (D2,

V , r : C x . r O r  * C , r ' . : O :

from which a 2 x 2 matrix eigenvalue problem arises:

( 3 .  r 4 )

( 3 . r 5 )

This quadratic equation has rwo solutions

2En : 1.11r.' + H2.2) + (3 .  r  6 )

These two solutions can be equal (i.e., the two state energies can cross) only if the
square root factor vanishes. Because this factor is a sum of two squares (each
thus being positive quantities), this can only happen if two identities hold:

H t t :  H : . : ( 3 .  r  7 )

and

H r . :  :  o .  ( 3 . 1 8 )

The main point then is that in the 31/ - 6 dimensional space, the two states n.ill
generally not have equal energy. However. in a space of two lower dimensions
(because there are two conditions that must simultaneousll 'be obeyed - Hr.t :
H22and Ht.2 :0), their energies may be equal. They do not have to be equal, but
it is possible that they are. It is based upon such an analysis that one usually says
that potential energy surfaces in 31/ - 6 dimensions may undergo intersections
in spaces of dimension 3N - 8. If the two states are of different symmetry. the
off-diagonal element 111.2 vanishes automatically, so only one other condition is
needed to realize crossing. So, we say that two states of different symmetry can
cross in a space of dimension 3N - 7.

To find the lower-dimensional space in which two surfaces cross, one must
have available information about the gradients and Hessians of both functions
V1 and, V2. One then uses this information to locate a geometry at which the
difference function F : f\ - vil2 passes through zero by using conventional
"root finding" methods designed to locate where F : 0. once one such geomerry
(qe) has been located, one subsequently tries to follow the .,seam" along which
the function F remains zero. This is done by parameterizing steps away from
(qo) in a manner that constrains such steps to have no component along the
gradient of F (i.e., to lie in the tangent plane where F is constant). For a system
rvith 3N - 6 geometrical degrees of freedom, this seam will be a sub-surface of
lower dimension (31/ - 8 or 31/ - 7 as noted earlier). such intersection seam
location procedures are becoming more commonly employed, but are still under

Ht :  -  E  H t . :

Htt Hz2 - E
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very active development. Locating these intersections is an important ingredient
rvhen one is interested in studying, for example, photochemical reactions in rvhich
the reactants and products may move from one electronic surface to another.

3.2 Normal modes of vibration

Having seen how one can use informat ion about  the gradients and Hes-
sians on a Born-oppenheimer surface to locate geometries correspond-
ing to stable species, let us now move on to see how this same data are
used to treat vibrations on this surface.

For a polyatomic molecule whose electronic energy depends on the 31y'
cartesian coordinates of its N atoms, the potential energy z can be expressed
(approximately) in terms of a Taylor series expansion about any of the local
minima. of course, difrerent local minima (i.e., different isomers) wil l have
difl-erent values fbr the equilibrium coordinates and for the derivatives of the
energy with respect to these coordinates. The Taylor series expansion of the
electronic energy is written as

v ( q * ) = l , 1 o l + f t a I � l i ) q 1 ) q p  + t l 2 L q , H 1 r . Q t * . . . ,  ( 3 . 1 9 )
k  j . k

ivhere z(0) is the value of the electronic energy at the stable geometry under study,
q1 is the displacement of the kth cartesian coordinate away from rhis starting
position. ( 'd I" laqk) is the gradient of the elecrronic energy along this direction,
and the H 1.t; are the second derivati le or Hessian matrix elements along these di-
rections, H i.r : G2V lAq iAqk). If the geometry corresponds to a stable species,
the gradient terms rvil l  all vanish (meaning this geometry corresponds to a min-
tmum, maximum. or saddle point). and the Hessian matrix wil l possess 3rv - 5
(for l inear species) or 3N - 6 (for non-linear molecules) positive eigenvalues
and 5 or 6 zero eigenvalues (corresponding to 3 translational and 2 or 3 rotational
motions of,the molecule). If the Hessian has one negative eigenvalue, the geom-
etry corresponds to a transition state. From now on, we assume that the _qeometry
under sfudy corresponds to that of a stable minimum about which vibrational
motron occurs. The treatment of unstable geometries is of great importance to
chemistry. bLrt this material wil l be l imited to vibrations of stable species.

3.2.1 The Newton equat ions of  mot ion for  v ibrat ion
The kinetic and potential energy matrices
Truncating the Taylor series at the quadratic terms (assuming these terms dom-
inate because only small displacements from the equil ibrium geometry are of
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interest), one has the so-called harmonic potential:

t '  (qr) = t ' ((\ + \ l2lt1 i H i r,c/t

x i : t l i l . n t r ) 1 2 .

in terms of which the above Neu'ton equations become

i ' , : - L r ' , . ^ r ^
k

and the mass-weighted Hessian matrix elements are

Hl .1 :  H i . r \ t  , , r t  t ) - t '2  .

The harmonic vibrational energies and normal
Assuming that the rl undergo some form of sinusoidal

1 . i

The classical rnechanical equations of motion for the 3N{r77,} coordinates can be
written in terms of the above potential energy and the follou'ing kinetic energy
function:

T  -  1  / )  \ - , , ,  . ; :
/ - " '  ' ' t  t

( 3 . 2 1  t

where ri7 denotes the tirne rate of change of the coordinate q i and tn, is the mass
of the atom on which the.Tth Cartesian coordinate resides. The Neu,ton equations
thus obtained are

(  3.20)

i l 1 ) t

r l  l l r

(3.24)

(3.25 )

mode eigenvectors
tirne evolution:

\ 3 . 2 7  |

n t , i - * l H r r , 4 t

where the force along theTth coordinate is given by rninus the derir. 'ative of the
potential I, '  along this coordinarc (AI/ ldq i): l* H 1.rtlr i.r, ithin the harntonic
approxin.ration.

These classical equations can more compactlv be expressed in terms ofthe time
evolution of a set of so-called mass weighted Cartesian coordinates defined as

) i  t ( t )  :  - r , (0)  cos(o/) ,  (3.26)

and substituting this into the Newton equations produces a matrix eigenvalue
equation:

- 2 x y : l u ' , . r x t

in which the eigenvalues are the squares of the so-called nonnal mode vibrational
frequencies and the eigenvectors give the amplitudes of motion along each of the
31y' mass-weighted Cartesian coordinates that belong to each mode. Hence, to
perform a normal-mode analysis of a molecule, one forms the mass-weighted
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,

Hessian matrix and then finds the 3N - 5 or 3N - 6 non-zero eigenvalues cor2 as

rrell as the corresponding eigenuectors -tf ' l).

\\ ' i thin this harmonic treatment of vibrational motion. the total vibrational

energl' ofthe rrolecule is given as

l . \  - 5  o r  6

E { r ' 1 . r ' . . . . . . v i \  : o r r ) =  t  h t , t , l v  t l ' 2 t
/  ' * t \ ' 1

a sum of 3,V - 5 or 31y' - 6 independent contributions. one for each normal

mode. The corresponding total vibrational wave function

qr : ll ./,, (,,,,)
/ = l . l \ , 5  o r 6

(3 .29 )

is a product of 3N - 5 or 3N - 6 harmonic oscil lator functions ly',. (.r{l)), one for
each normal mode. The energy gap between one vibrational level and another in
which one of the vl quantum nurnbers is increased by unity (i.e.. for fundamental
r  ibrat ional  t ransi t ions )  is

(3 .30 )

The harmonic model thus predicts that the "fundamental" (rr - 0 ---> r.' : I ) and
"hot band" (u : I + v : 2) transitions should occur at the same energy. and the
o!ertone (t, : 0 + l : 2) transitions should occur at exactly twice this energy.

3.2.2 The use of  symmetry

Symmetry adapted modes
It is often possible to simplity the calculation of the normal mode frequencres
and eigenvectors by exploit ing rnolecular point group symmetry. For molecules
that possess symmetrv at a particular stable geometry. the electronic potential
tr1(r7r) displays symmetrv with respect to displacements of symmetry equir.a-
lent Cartesian coordinates. For exantple. consider the water molecule at its C2u
equil ibrium geornetry as i l lustrated in Fig. 3.2. A very small movement of the
H2O molccule's lefi H atom in the positive -r direction (A-t1-) produces the same
change in the potential i/ as a correspondingly small displacernent of the right
H atom in the negativc,t direction (-A-rR).Similarly. movement of the left H in
the positive _r' direction (A.v1) produces an energy change identical to movement
of the right H in the positive,r' direction (A_r,n).

The equivalcnce of the pairs of Cartesian coordinate displacements is a result of
the tact that the displacement vectors are connected by the point group operations
of the C:, gror-rp. In particular. reflection of Arlthrough the r,: plane (the two
planes are depicted in Fig. 3.3) produces -A.rn, and reflection of Ars through
this same plane yields A.r'R.

111
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More generallr ' ' .  i t is possible to combine sets of cartesian displacernent coordi-
nates { r71 i in toso-cal ledsymmerryadaptedcoordi 'a tes {er . i ) ,u ,heretheindex f
labels the irreducible representation in the appropriate poinl group and.7 labels the
particular combination of that symmetrv. These svmmetry adapted coor<Jinates
can be formed by applying the point group prqectron operators (that are treated
in detail in chapter 4) to the indi' idual cartesian displacenient coordinates.

To il lustrate. again consider the H2o nrolecule in the coordinate svstern cle_
scribed above. The 3N:9 mass u'eighted Cartesian <.l isplacement coordinates
(Xr_.  l ' r_ .  Zt .Xo. f 'o .  Zo. . ln ,  ln .  Z{canbesymnretryadaptecl  b l ,appl l , rngthe
following 4 projection operators:

P u , : ) * o , . + o , , * C ; .

Pt , ,  :  I  f  6r , .  -o. . ,  -  C' : .

P t , , :  l - o , . *  o . ,  - C : .

% : : 1 - o , , -  { , ,  * C . .

Q u t . r = 2 r " : J f ; - ) f p 1 .

Q o ' . : . = Z ' " I i i + l n ] .

?. , . - :  :  [ fo ] .

Those of b2 symmerry are

Q b r r = 2 ' / t [ X y + X p . l .

Q v z : 2 - t i 2 7 Y y  -  Y p l ,

0u, :  :  [Xo] .

and the combinations

9b , . ,  =  2 - ' / ' l z t+  Zp . l

Qa, t = lZol

are of b1 symmetry, whereas

(3 .3  I  t
( 3 .31 r

(3 .33  )
(3 .34  )

to each of the 9 original coordinates (the symbol o denotes reflection through
a plane and c2 means rotation about the molecule s C2 axis). of course. one
v'ill not obtain 9 x 4 : 36 independent symmetry adapted coordinates in this
manner; man1, identical combinations wil l arise. and only 9 wil l be independent.

The independent combinations of c 1 srvtnrctn. (normalized to produce 'ectors
of unit len_eth) are

(3 .3  5  )
(3 .36 )

1 3 1 7 1

(3 .3  8  )
(3 .39 )

(3.40)

(3.1 r  )
(.3.42)

is of a2 symmetry.

Q o r . ,  : 2 - r / 2 1 7 y  -  Z u ) (3.43)
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Point group symmetry of the harmonic potential

These nine Qr.i are expressed as unitary transformations of the original mass-
rveighted Cartesian coordinates:

1 1 3

These transtbrmation coefficients {Cr.ir} can be used to carry out a unitary

transformation of the 9 x 9 mass-weighted Hessian matrix. In so doing, we need

only form blocks

Qr. ,  :LCr . , . , , 'Y r

Hi., :  L, C y. 1 1 H1,.1, '  (nt 1,m r, ) ' ' ' t  C r. ,  r

Hi.l '  = L C r.,.r Hr.r,(m pt y )-t i '  C y.1.y

I

* l S 1 * X p * - { o l .
I

* [ Y t + ] h * r o l '
I

* t z t * Z P . * Z o )

are three translation eigenvectors of h2. ctl and bl Symmetry, and

I
- (Z r  -  Z r< )

/ a

(3.44)

(3.15)

(3 .46 )

(3. ,17)

( 3.,18 )

(3. ,+9)

(3 .50 )

rvithin which the symmetries of the two modes are identical. The off-diagonal

elements

vanish because the potential V(qi) (and the full vibrational Hamiltonian H :

T + V) commutes with thc C2, point group symmetry operations.
As a result, the 9 x 9 mass-weighted Hessian eigenvalue probler.n can be sub-

divided into two 3 x 3 matrix problems (of ar and b: symmetry), one 2 x 2 matrix
of b1 symmetry and one I x I matrix of a1 symmetry. The eigenvalues of each
of these blocks provide the squares of the harmonic vibrational frequencies. the
eigenvectors provide the normal mode displacements as l inear combinations of
the symmetry adapted {Qr. i l .

Regardless of whether symmetry is used to block diagonalize the mass-
weighted Hessian, six (for non-linear molecules) or f ive (for l inear species) of
the ei-eenvalues wil l equal zero. The eigenvectors belonging to these zero eigen-
values describe the thrce translations and two orthree rotations of the molecule.
For example,

ts a rotation (about the _r,-axis in Fig. 3.2) of a2 svmmetry. This rotation vector
can be generated by applying the a1 projection operator to ZL or to Zp. The other
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/ tn.'. 
,/"

two rotations are of b1 and bt symmetry and involve spinning of the molecule
about the,t- and :-axes of Fig. 3.2, respectively.

So, of the nine Cartesian displacements, three are of a1 symmetry, three of b2.
two of br. and one of a2. Of these, there are three translations (a1, b2, and b1)
and three rotations (bz, bt, and a2). This leaves two vibrations ofal and one of
b2 synmetry. For the H2O exarnple treated here, the three non-zero eigenvalues
of the mass-weighted Hessian are therefore of a1, b2, and a1 symrnetry. They
describe the symmetric and asymmetric stretch vibrations and the bending rnode,
respectively, as illustrated in Fig. 3.4.

O
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The method ofvibrational analysis presented here can work for any polyatomic

molecule. One knows the mass-weighted Hessian and then computes the non-

zero eigenvalues. which then provide the squares of the normal mode vibrational

frequencies. Point group symmetry can be used to block diagonalize this Hessian

and to label the vibrational modes according to symmetry as we show in Fig. 3.5
for the CHa molecule in tetrahedral symmetry.

1 ' t 5


