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Chapter 3
Characteristics of energy surfaces

3.1 Strategies for geometry optimization

The extension of the harmonic and Morse vibrational models to poly-
atomic molecules requires that the multidimensional energy surface be
analyzedin a manner that allows one to approximate the molecule’s mo-
tions in terms of many nearly independent vibrations. In this section, we
will explore the tools that one uses to carry out such an analysis of the
surface,

Many strategies that attempt to locate minima on molecular potential en-
ergy landscapes begin by approximating the potential energy V for gecometries
(collectively denoted in terms of 3N Cartesian coordinates {q;}) in a Taylor se-
ries expansion about some “starting point” geometry (i.e., the current molecular
geometry in an iterative process):

Pige) = VO + Y @V /0q0q0 + 1723 g, Hysgr + - G.1)
k ik

Here, 1(0) is the energy at the current geometry, (37 /dg; ) = g is the gradient of
the energy along the ¢, coordinate, H, ; = (9° V/dq,;0qy)is the second derivative
or Hessian matrix, and g; is the length of the “step™ to be taken along this Cartesian
direction. An example of an energy surface in only two dimensions is given
in Fig. 3.1 where various special aspects are illustrated. For example, minima
corresponding to stable molecular structures, transition states (first order saddle
points) connecting such minima, and higher order saddle points are displayed.

If the only knowledge that is available is ¥(0) and the gradient components
(e.g.. computation of the second derivatives is usually much more computationally
taxing than is evaluation of the gradient), the linear approximation

5]
[RS]

Vg = V0 + Y gxas (3.
[

suggests that one should choose “step™ elements g, that are opposite in sign from
that of the corresponding gradient elements g; = (3 /dg;). The magnitude of
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the step elements is usually kept small in order to remain within the “trust radius”
within which the linear approximation to ¥ is valid to some predetermined desired
precision.

When second derivative data is available, there are different approaches to
predicting what step {g;} to take in search of a minimum. We first write the
quadratic Taylor expansion

Vg = VO + Y gae +1/2) ¢, H g (3.3)
k jok

in matrix-vector notation
M@=V +q"-g+1/2q"-H-q (3.4)

with the elements{q, } collected into the column vector q whose transpose is
denoted q". Introducing the unitary matrix U that diagonalizes the symmetric H
matrix, the above equation becomes

Viq)= V() +¢g"UUTq + 1/2q"UUTHUU q. (3.5)
Because UTHU is diagonal,
(UTHU); = 8y (3.6)

and has eigenvalues A;. For non-linear molecules, 3N — 6 of these eigenvalues
will be non-zero; for linear molecules, 3V — 5 will be non-zero. The 5 or 6 zero
eigenvalues of H have eigenvectors that describe translation and rotation of the
entire molecule; they are zero because the energy surface ¥ does not change if
the molecule is rotated or translated. The eigenvectors of H form the columns of
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the array U that brings H to diagonal form:

Z Hk./l—"l.m = }wnl-‘v/\.m- (37)

Therefore. if we define
0.~ Yl it G, =Y U o
k k
to be the component of the step {g;} and of the gradient along the mth eigen-
vector of H, the quadratic expansion of V7 can be written in terms of steps along
the 3N — 5 or 3N — 6 {Q,,} directions that correspond to non-zero Hessian
eigenvalues:

Vige) =V(0)+ Y GrOw+1/2) OuinQn (3.9)

The advantage to transforming the gradient, step. and Hessian to the eigenmode
basis is that each such mode (labeled m) appears in an independent uncoupled
form in the expansion of V. This allows us to take steps along cach of the O,
directions in an independent manner with each step designed to lower the potential
energy (as we search for minima).

For each eigenmode direction, one can ask for what step O would the quantity
G Q + 1/2 1 Q? be a minimum. Differentiating this quadratic form with respect
to Q and setting the result equal to zero gives

Qm = —=Gy/hm: (3.10)

that is, one should take a step opposite the gradient but with a magnitude given
by the gradient divided by the eigenvalue of the Hessian matrix. If the current
molecular geometry is one that has all positive A, values, this indicates that one
may be “close” to a minimum on the energy surface (because all 4,, are positive
at minima). In such a case, the step Q,, = —G,, /A, is opposed to the gradient
along all 3N — 5 or 3N — 6 directions. The energy change that is expected to
occur if the step {Q,,} is taken can be computed by substituting Q,, = —G,, /A
into the quadratic equation for V:

V(after step) = V(0) + Y G (=Gou/hn) + 1/2Y_ dl=Gon/in)

m "

V(O)'_ 1/22)‘-rn(_Gm/)"m)2 (311)

This clearly suggests that the step will lead “downhill” in energy as long as all of
the A,, values are positive.

However, if one or more of the X,, are negative at the current geometry, one is
in a region of the energy surface that is not close to a minimum. In fact, if only one
Am 18 negative, one anticipates being near a transition state (at which all gradient
components vanish and all but one 4,, are positive with one A,, negative). In such
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a case, the above analysis suggests taking a step Q,, = —G,, /%m along all of the
modes having positive ,,, but taking a step of opposite direction 0, = +G, /A,
along the direction having negative ,,.

Inany cvent. once a step has been suggested within the eigenmode basis, one
needs to express that step in terms of the original Cartesian coordinates qi SO
that these Cartesian values can be altered within the software program to effect
the predicted step. Given values for the 3N — 5 or 3N — 6 step components
On (n.b., the step components Q,, along the 5 or 6 modes having zero Hessian
eigenvalues can be taken to be zero because they would simply translate or rotate
the molecule), one must compute the {g¢}. To do so, we use the relationship

Ow=> Ul a (3.12)
&
and write its inverse (using the unitary nature of the U matrix):

qr = Z L'YA.m Qm (3 13)
™"
to compute the desired Cartesian step components.
In using the Hessian-based approaches outlined above, one has to take special
care when one or more of the Hessian cigenvalues is small. This often happens
when:

(i} one has a molecule containing “soft modes™ (i.e., degrees of freedom along which
the energy varies little), or

(i) one moves from a region of negative curvature into a region of positive curvature
(or vice versa) - in such cases, the curvature must move through or near zero.

For these situations, the expression Q,, = —G,, /A, can produce a very large
step along the mode having small curvature. Care must be taken to not allow
such incorrect artificially large steps to be taken.

Before closing this section, [ should note that there are other important regions
of potential energy surfaces that one must be able to locate and characterize.
Above, we focused on local minima and transition states. In Chapter 8, we will
discuss how to follow so-called reaction paths that connect these two kinds of
stationary points using the type of gradient and Hessian information that we
introduced earlier in this chapter.

Finally, it is sometimes important to find geometries at which two Born—
Oppenheimer energy surfaces Vi(q) and 75(q) intersect. First, let’s spend a few
minutes thinking about whether such surfaces can indeed intersect, because stu-
dents often hear that surfaces do not intersect but, instead. undergo “avoided
crossings”. To understand the issue, let us assume that we have two wave func-
tions @ and &, both of which depend on 3N — 6 coordinates {q}. These two
functions are not assumed to be exact eigenfunctions of the Hamiltonian H.
but likely are chosen to approximate such eigenfunctions. To find the improved
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functions W and ¥ that more accurately represent the eigenstates, one usually
forms linear combinations of ®, and ¢,

Wy = Cx P+ Cr 2@ (3.14)

from which a 2 x 2 matrix eigenvalue problem arises:

|
H,;—-FE Hi» —0 (3.15)
Hy Hy,— E
This quadratic equation has two solutions
2E. = (Hiy+ Hyo) % \J(Hyy - HeoP + 442, (3.16)

These two solutions can be equal (i.e., the two state energies can cross) only if the
square root factor vanishes. Because this factor is a sum of two squares (each
thus being positive quantities), this can only happen if two identities hold:

Hyy=Hy, (3.17)
and

The main point then is that in the 3N — 6 dimensional space, the two states will
generally not have equal energy. However, in a space of two lower dimensions
(because there are two conditions that must simultaneously be obeyed - H, | =
H, > and H) ; = 0), their energies may be equal. They do not have to be equal, but
it is possible that they are. It is based upon such an analysis that one usually says
that potential energy surfaces in 3N — 6 dimensions may undergo intersections
in spaces of dimension 3N — 8. If the two states are of different symmetry, the
off-diagonal element H; » vanishes automatically, so only one other condition is
needed to realize crossing. So, we say that two states of different symmetry can
cross in a space of dimension 3N — 7.

To find the lower-dimensional space in which two surfaces cross, one must
have available information about the gradients and Hessians of both functions
V1 and V,. One then uses this information to locate a geometry at which the
difference function F = [V} — V»]* passes through zero by using conventional
“root finding” methods designed to locate where F' = 0. Once one such geometry
(o) has been located, one subsequently tries to follow the “seam” along which
the function F remains zero. This is done by parameterizing steps away from
(go) in a manner that constrains such steps to have no component along the
gradient of F (i.e., to lie in the tangent plane where F is constant). For a system
with 3N — 6 geometrical degrees of freedom, this seam will be a sub-surface of
lower dimension (3N — 8 or 3N — 7 as noted earlier). Such intersection seam
location procedures are becoming more commonly employed, but are still under
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very active development. Locating these intersections is an important ingredient
when one is interested in studying, for example, photochemical reactions in which
the reactants and products may move from one electronic surface to another.

3.2 Normal modes of vibration

Having seen how one can use information about the gradients and Hes-
sians on a Born-Oppenheimer surface to locate geometries correspond-
ing to stable species, let us now move on to see how this same data are
used to treat vibrations on this surface.

For a polyatomic molecule whose electronic energy depends on the 3N
Cartesian coordinates of its N atoms, the potential energy ¥ can be expressed
(approximately) in terms of a Taylor series expansion about any of the local
minima. Of course, different local minima (i.e., different isomers) will have
different values for the equilibrium coordinates and for the derivatives of the
energy with respect to these coordinates. The Taylor series expansion of the
electronic energy is written as

Vig) = VO + Y (07 /dqigs + 1723 q,Hyge+ -, (3.19)
k NS

where V(0) is the value of the electronic energy at the stable geometry under study,
gk 1s the displacement of the kth Cartesian coordinate away from this starting
position. (6 4/dqy) is the gradient of the electronic energy along this direction,
and the H, ; are the second derivative or Hessian matrix elements along these di-
rections, H, ; = (8° V/9q;9q:). If the geometry corresponds to a stable species,
the gradient terms will all vanish (meaning this geometry corresponds to a min-
imum, maximum, or saddle point), and the Hessian matrix will possess 3N — 3
(for linear species) or 3N — 6 (for non-linear molecules) positive eigenvalues
and 5 or 6 zero eigenvalues (corresponding to 3 translational and 2 or 3 rotational
motions of the molecule). If the Hessian has one negative eigenvalue, the geom-
etry corresponds to a transition state. From now on, we assume that the geometry
under study corresponds to that of a stable minimum about which vibrational
motion occurs. The treatment of unstable geometries is of great importance to
chemistry, but this material will be limited to vibrations of stable species.

3.2.1 The Newton equations of motion for vibration

The kinetic and potential energy matrices
Truncating the Taylor series at the quadratic terms (assuming these terms dom-
inate because only small displacements from the equilibrium geometry are of
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interest), one has the so-called harmonic potential:

Flge) = V(O)+1/2Y g H xqi. (3.20)
Tk
The classical mechanical equations of motion for the 3N {g,} coordinates can be
written in terms of the above potential energy and the following kinetic energy
function:

LVS)

T:}/zzm,q'f, (3.21)

7
where §; denotes the time rate of change of the coordinate ¢; and m ; is the mass
of the atom on which the jth Cartesian coordinate resides. The Newton equations
thus obtained are

mi == Hq. (3.22)
k

where the force along the jth coordinate is given by minus the derivative of the
potential V" along this coordinate (3 /dq;) = >, H; xq; within the harmonic
approximation.

These classical equations can more compactly be expressed in terms of the time
evolution of a set of so-called mass weighted Cartesian coordinates defined as

5

x;=gim ). (3.23)
in terms of which the above Newton equations become
Yo==) Hx (3.24)
k
and the mass-weighted Hessian matrix elements are
H//_A = H;(m /»mk)‘]":. (3.25)

The harmonic vibrational energies and normal mode eigenvectors
Assuming that the x; undergo some form of sinusoidal time evolution:

x;(1) = x,(0) cos(wt), (3.26)

and substituting this into the Newton equations produces a matrix eigenvalue
equation:

cuzx‘,v = Z H_/,'-A'\"' (3.27)
%

in which the eigenvalues are the squares of the so-called normal mode vibrational
frequencies and the eigenvectors give the amplitudes of motion along each of the
3N mass-weighted Cartesian coordinates that belong to each mode. Hence, to
perform a normal-mode analysis of a molecule, one forms the mass-weighted
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Hessian matrix and then finds the 3V — 5 or 3V — 6 non-zero eigenvalues w? as
well as the corresponding eigenvectors x;”’.

Wwithin this harmonic treatment of vibrational motion, the total vibrational
energy of the molecule is given as

IN-3oro

E(\'[, Voo, Vinv_sor ()) = Z ﬁwj(v/ + 1/2). (328)
j=t

a sum of 3V — 5 or 3N — 6 independent contributions, one for each normal
mode. The corresponding total vibrational wave function

U= 1‘[ v, (x'7) (3.29)

j=13N-5or6

isaproductof 3N — 5or 3N — 6 harmonic oscillator functions ¥, (x'/)), one for
each normal mode. The energy gap between one vibrational level and another in
which one of the v; quantum numbers is increased by unity (i.e., for fundamental
vibrational transitions) is

AE, .. . =lw,. (3.30)

vy~
/

The harmonic model thus predicts that the “fundamental” (v = 0 — v = |)and
“hotband” (v = 1 — v = 2) transitions should occur at the same energy, and the
overtone (v = 0 — v = 2) transitions should occur at exactly twice this energy.

3.2.2 The use of symmetry

Symmetry adapted modes

It is often possible to simplify the calculation of the normal mode frequencies
and eigenvectors by exploiting molecular point group symmetry. For molecules
that possess symmetry at a particular stable geometry, the electronic potential
Vig,) displays symmetry with respect to displacements of symmetry equiva-
lent Cartesian coordinates. For example, consider the water molecule at its Ca,
equilibrium geometry as illustrated in Fig. 3.2. A very small movement of the
H>O molecule’s left H atom in the positive x direction (Ax ) produces the same
change in the potential " as a correspondingly small displacement of the right
H atom in the negative x direction (— Axg). Similarly, movement of the left H in
the positive y direction (A ) produces an energy change identical to movement
of the right H in the positive v direction (Ayg).

The equivalence of the pairs of Cartesian coordinate displacements is a result of
the fact that the displacement vectors are connected by the point group operations
of the €, group. In particular, reflection of Ax through the yr plane (the two
planes are depicted in Fig. 3.3) produces —Axg, and reflection of Ay, through
this same plane yields Avg.

111

molecule showing its
two bond lengths and
bond angle.

Two planes
of symmetry of the
water molecule.




112

Characteristics of energy surfaces

More generally, it is possible to combine sets of Cartesian displacement coordi-
nates {¢, }into so-called symmetry adapted coordinates {Or ,}, where the index T
labels the irreducible representation in the appropriate point group and / labels the
particular combination of that symmetry. These symmetry adapted coordinates
can be formed by applying the point group projection operators (that are treated
in detail in Chapter 4) to the individual Cartesian displacement coordinates.

To illustrate, again consider the H,O molecule in the coordinate system de-
scribed above. The 3N = 9 mass weighted Cartesian displacement coordinates
(XL, Y. 2L Xo, Yo. Zo. Xr, Tr. Zg) can be symmetry adapted by applying the
following 4 projection operators:

Py =140 + o+ Co (3.31)
Py, =1+0,.~0,—C. (3.32)
Py, =1 ~0.+0, - C,, (3.33)
Po, =1—-0. -0, +C,. (3.34)

to each of the 9 original coordinates (the symbol o denotes reflection through
a plane and (> means rotation about the molecule’s C, axis). Of course, one
will nor obtain 9 x 4 = 36 independent symmetry adapted coordinates in this
manner; many identical combinations will arise, and only 9 will be independent.

The independent combinations of a, symmetry (normalized to produce vectors
of unit length) are

Qa1 = 277[X — Xg). (3.35)

Qa2 =277V + WR). (3.36)

Oq, 5 = [Yo]. (3.37)
Those of b, symmetry are

Ob, 1 = 272 [XL + XAR). (3.38)

Ob,2 = 27"2[1 - . (3.39)

Op, 3 = [X0]. (3.40)
and the combinations

Ov,1 =272 + Zg). (3.41)

Ob,2 = [Z0] (3.42)

are of b; symmetry, whereas
Qa1 =272, - Zg] (3.43)

is of a; symmetry.
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Point group symmetry of the harmonic potential
These nine Or ; are expressed as unitary transformations of the original mass-
weighted Cartesian coordinates:

Or, =) Cr ki (3.44)
k

These transtormation coefficients {Cr ; ;} can be used to carry out a unitary
transformation of the 9 x 9 mass-weighted Hessian matrix. In so doing, we need
only form blocks

Hyy = CrxHwtmemy) 2Cy (3.45)
k&
within which the symmetries of the two modes are identical. The off-diagonal
elements

HT = Z Crjx Hiwe (memy )™ Cry o (3.46)
P

vanish because the potential V(g;) (and the full vibrational Hamiltonian H =
T + V) commutes with the C», point group symmetry operations.

As aresult, the 9 x 9 mass-weighted Hessian eigenvalue problem can be sub-
divided into two 3 x 3 matrix problems (of a; and b, symmetry), one 2 x 2 matrix
of by symmetry and one | x | matrix of a, symmetry. The eigenvalues of each
of these blocks provide the squares of the harmonic vibrational frequencies, the
eigenvectors provide the normal mode displacements as linear combinations of
the symmetry adapted {Qr ;}.

Regardless of whether symmetry is used to block diagonalize the mass-
weighted Hessian, six (for non-linear molecules) or five (for linear species) of
the eigenvalues will equal zero. The eigenvectors belonging to these zero eigen-
values describe the three translations and two or three rotations of the molecule.

For example,
I
[XL + XR + Xol. (3.47)
NG R
1
— YL+ Tr + Yol. (3.48)
V3
|
—[ZL + Zr + Z0o] (3.49)
V3
are three translation eigenvectors of b;. a; and by symmetry, and
1
%(ZL — ZR) (3.50)

18 a rotation (about the v-axis in Fig. 3.2) of @; symmetry. This rotation vector
can be generated by applying the a» projection operator to Z|_ orto Zr. The other
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two rotations are of by and b, symmetry and involve spinning of the molecule
about the x- and z-axes of Fig. 3.2, respectively.

So, of the nine Cartesian displacements, three are of a, symmetry, three of by,
two of by. and one of a,. Of these, there are three translations (a,, b,, and b;)
and three rotations (b2, by, and a,). This leaves two vibrations of @, and one of
by symmetry. For the H,O example treated here, the three non-zero eigenvalues
of the mass-weighted Hessian are therefore of aj, by, and a, symmetry. They
describe the symmetric and asymmetric stretch vibrations and the bending mode,
respectively, as illustrated in Fig. 3.4.
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The method of vibrational analysis presented here can work for any polyatomic
molecule. One knows the mass-weighted Hessian and then computes the non-
zero eigenvalues, which then provide the squares of the normal mode vibrational
frequencies. Point group symmetry can be used to block diagonalize this Hessian
and to label the vibrational modes according to symmetry as we show in Fig. 3.5
for the CHy molecule in tetrahedral symmetry.
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