
Chapter  2
Model problems that form important
starting points

The model  problems discussed in th is  chapter  form the basis  for  chemists '
understanding of  the e lect ronic  s tates of  atoms,  molecules,  c lusters,  ano
sol ids as wel l  as the rotat ional  and v ibrat ional  mot ions of  molecules.

2.1 Free electron model of polyenes

The par t ic le- in-a-box problem provides an important  model  for  severar
relevant chem ical situations.

The "particle-in-a-box" model for motion in tri 'o dimensions discussed earlier
can obviously be extended to three dimensions or to one. For two and three
dilnensions. it provides a crude but useful picture for electronic states on surfaces
or in metall ic cr1'stals, respectivelv. I say n.retall ic crystals because it is in such
systems that the outemost valence electrons are reasonably rvell treated as rnoyilg
freely. Free motion u'ithin a spherical volume gives rise to eigenfuncrions that are
used in nuclear physics to describe the motions of neutrons and protons in nuclei.
In the so-called shell rrodel ofnuclei, the neutrons and protons fi l l  separate s.
p. d, etc. orbitals with each tirpe of nucleon forced to obey the pauli principle
(i.e., to have no more than two nucleons in each orbital because protons and
neutrons are fennions). To remind you, I display in Fig.2.l the angular shapes
that characterize s. p" and d orbitals.

This same spherical box model has also been used to describe the orbitals
of valence electrons in clusters of rnetal atoms such as Cs,,, Cu,,. Na,, and their
positive and negative ions. Because of the metall ic nature of these species. their
r"alence electrons are essentially free to roam over the entire spherical volurne of
the cluster. which renders this simple rnodel rather effective. In this rnodel. one
thinks of each electron being free to roam u,ithin a sphere of radius R (i.e., having
a potential that is uniform rvithin the sphere and infinite outsicle the sphere).
Finally. as noted above, this same spherical box model forms rhe basis of the
so-called shell model of nuclear structure. In this model. one assumes that the
protons and neutrons that make up a nucleus, both of u,hich are fermions. occuDv
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sphericrl-box orbitals (one set of orbitals fbr proto's. another sr"-t for nc.urrons
because thev are distinguishabrc rro' one another). By pracing the protons and
neutrons into thesc- orbitais. t\\,o to an orbital, one achic.n,es a description of the
energy le'els of the nucleus. Excited states are acli ie'ed by prornoting a neutron
or proton fiorn an clccupied orbital to a l irtuar (i.e.. pre'iously unoccLrpied)
orb i ta i .  ln  such a rnodcr .  especia i lv  s tabre nucle i  are achie 'ed when. .crosed_
shel l "  conl igurat ions such as ls :  or  ls :2sr2p6 arc.  rca l ized (e.g. .  aHe has both
neutrons and protons in Isr configurations).

The orbitals that sol'e the Schroclinger equation i 'side such a spherical box are
not the same in rheir raclial "shapes" as the s. p, d. etc. orbitals of atoms because. rn
atoms. there is an additional radial potential v(r): -Ze2 lr presenr. Honever,
their ang'lar shapes are the same as in atomic structure because. in both cases. the
potential is independent of d and ry'. As the orbital prots shou,n above indicate. the
angular shapes ofs. p. and d orbitals display varying numbers ofnodal surthces.
The s orbitals have none. p orbitals have one. a'd d orbitals have two. Analogous ro
how the number of nodes related to the total energy of the particle constrained
to the ,r, -u plane, the nurnber of nocles in the angular wave functions indicates
the amount of angular or rotational energy. Orbitals of s shape have no angular
energy, those ofp shape have less then do rl orbitals. etc.

T h e  a n g u l a r
shapes  o f  s ,  p ,  and  d
fu  nc t ions .



48 Model  problems that  form important  s tar t ing points

one-dinrensional free particle motion provides a qualitatircll, correcr picturc
fbr :r-electron motion along tl ie p" orbitals of delocalized polvenes. The one
Cartesian dir.nension then corresponds to rnotion along the delocalized chain. In
such a rnodel. the box length z is related to the carbon-carbon boncl length
R and the number N of carbon centers in'olved in the delocalized netrvork
I : (A - l)R. In Fig. 2.2, such a conjugated netu'ork involving nine centers
is depicted. In this exan.rple. the box lcngth rvould be eight t in.res the c-C bond
length. The ei-eenstates ry',,( l) and their energies 8,, represent orbitals into u,hich
electrons are placed. in the example case. ifnine z electrons arc present (e.g.. as
in the 1.3.5.7-nonatetraene radical), the ground electronic state would be reprc-
sented by a total vnave function consisting of a product in l l t ich the lorvest four
ry's are doubly occupied and the fifth ry' is singly occupied:

tU : rlpt[y pltzar[lptJt3atltsBt.aullct ']1tr:a. (l. l  )

The ---component angular momentum states of the electrons are labeled q and t')
as discussed earlier.

A product lr,ave function is appropriate because the total Harniltonian involves
the kinetic plus potential energies ofnine electrons. To the extent that this total
ener-gy can be represented as the sum of nine separate energies, one for each
electron, the Hamiltonian alloll's a separation of r,'ariables

H  = L H U )  e . 2 )

in which each H(j) describes the kinetic and potential energy of an individual
electron. Recall that when a partial differential equation has no operators that
couple its different independent variables (i.e., when it is separable). one can
use separation of variables methods to deconpose its solutions into products.
Tlrus, the (approximate) additivity ofllimplies that solutions of HtU : EV are
products of solutions to

H(. i ) l / ( r  j )  :  E i t t i ) .  (2 .3)

The two lowest n-excited states would correspond to states of the form

tlt^ = ltptlr lplrzqrht')r\grlrplraug5plt5u, (.2.4)

and V'* = tlt lutlr lpllrglr:f r ltza*tl l tqctt!+fl lttu, (2.5)

The :z
atomic  o rb i ta ls  o f  a
con. jugated  cha in  o f  n ine
carbon a toms.
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where the spin-orbitals (orbitals multiplied by a or B) appearing in the above
products depend on the coordinates ofthe various electrons. For example,
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Irstlrt frtlzatlrzf rlr:ct rL:f lr+ulrsf rlrsa (2.6)

denotes

I 'p(r t) l '  |  f l ((2') l /2a(r3)l /zp, ' � t)r t4qG)1h f l(r)t l taa(r1)!t5 B(rs )ry'5a(re ).  (2. j)

The electronic excitation energies from the ground state to each of the above
excited states within this model would be

r = ( i) '" , in (f  )

(2 .8  )

.  r ;  T < 2  4 2 1
)  , t  I  J

I

2n t  l L2  L t  I
t :  f a :  < : " 1

a n d  A E ' ' : n : - - l  
"  - ' I

2 n  l L :  L t  J
It turns out that this simple moder of z-electron energies provides a quaritatively
correct picture of such excitation energies. Its simplicity allows one, for example.
to easily su-sgest how a molecule's color (as reflected in the complemenrary
color of the l ight the molecule absorbs) varies as the conjugation length r. of
the molecule varies. That is, longer conjugated molecules have lower-ener_ey
orbitals because r: appears in the denominator of the energy expression. As a
result, longer conjugated molecules absorb l ight of lower energy than do shorter
molecules.

This simple particle-in-a-box model does not yie ld orbital energies that relate
to ionizat ion eners. ies Lrn le 'ss rhe poru 'nt ia l  " ins ide the box"  is  speci f ied.  choosin_s
the value of this potential l l  such rhat , i) + l ir2ll2 12n1152 /Clis equal to mrnus
the low'est ionization energy of the 1,3,-5,7-nonatetraene radical, gives energy 1e.,,_
els (as E : I/o * lt2h2 l2ntl[n:7tr1; whictr can then be used as approximations
to ionizat i t ln  enerSies.

The individual ;r-molecular orbitals J t J

are depicted in Fig. 2.3 for a model of the 1.3.5-hexatriene z-orbital sysrem
for u'hich the "bor length" I is f ive times the distance R6. bet,"veen neighboring
parrs of carbon atorns. The magnitude of the Ath c-atom centered atomic orbital in
the nth:r-molecular orbital is -eiven by (2lL)1/2 sin(nrkRlc/ I). In this figure,
positive amplirude is denoted by the clear spheres. and negative amplitude is
shown by the darkcned spheres. where two spheres of rike shading overrap, the
wave tunction has enhanced amplitude: lvhere two spheres of different shading
overlap. a node occurs. once again. we note that the number ofnodes increases as
one ranges fiom the lowest energy orbital to higher energy orbitals. The reader is
once again encouraged to keep in mind this ubiquitous characteristic of quanrum
mechanical u,ave functions.

( t . e )  ' , , G [ 3

O t J

n=' GSgEgD
(2iL)t 2 sin\nt.r L); Z :,i x Rc.c

The phases
o f  t he  s i x  mo lecu la r
o rb i t a l s  o f  a  cha in
con ta i n i ng  s i x  a toms
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This simple model allor.l,s one to estimate spin densities at each carbon cenrer
and provides insight into which centers should be rrost amenable to electrophil ic
or nucleophil ic attack. For example, radical attack at the cs carbon of thc nrne_
atom nonatetraene system described earlier would be more lacile for the ground
state v than lor either v* or w'*. In the former. the unpaired spin density resides
in ry'5. u'hich has non-zero amplitude at the Cs site ,r- : L 12.ln V* and V,*, the
unpaired density is in y'ra and r,lr6. respectively. both of which ha'e zero density at
C5. Tlrese densities reffect the values (2/L)1"2 si '(rzARcq/Z ) of the amplitudes
for this case in which L : 8 x Rcc for, : 5, 4. and 6, respectivell,. plots of the
wave functions for n ranging from l to 7 are shor,,,n in another forrnat in Fig. 2.4
vyhere the nodal pattern is enrphasized. I hope that by now the student rs not
tempted to ask how the electron "gets" from one region ofhigh amplitude, throu-eh
a node, to another high-amplitude region. Remernber such questions are casr in
classical Newtonian language and are not appropriate when addressing the u,ave-
like properties of quantum mechanics.

2.2 Bands of orbitals in sol ids
Not only does the particle-in-a-box model offer a useful conceptual representatlon
of electrons rnoving in polyenes, but it arso is the zeroth-order model of band
structures in solids. Let us consider a simple one-dimensional .,crystal" consisting

{
e

The  noda l
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Bands of  orb i ta ls  in  sol ids

\ r
.l

'-q*C7

^a

' b ' t ' 6 ' h ' b ' ' } : t " s } } " b ' \ \

S,-$S-*i*$l,-gE*'ed*r*Si-*Sil;'@ r-*lsi*-*qe$,-

of a large number of atonts or ntolecules, each r,r, ith a single orbital (the spheres
shorvn) that it contl ibutes to the bonding. Let us arran-ue these buildin_r: blocks in
a regular "lattrce" as sho', '" n in Fig. 2.5. ln the top fbur rorvs of this figure we show
the case w'ith l. 2. 3. and -l bLrilding blocks. To the lefi of each ro\v. wc displav the
ener-s)- splitt ing pattern into which the building blocks'orbitals evolr,e as rhey
overlap and fbrrn delocalized rnolecular orbitais. Not surprisingly. for r : 2, one
finds a bonding and an antibonding orbital. For n : 3. one has one boncring. one
non-bondin-9. and one antibonding orbital. Finally. in the bottom ro\\i. wc attempt
to show "vhat happens for an infinitely long chain. The kev point is that the
discrete number of molecular orbitals appearing in the l,. l  orbital cases evolves
rnto a continuum of orbitals called a band. This band of orbital energies ranses
from its bottorn (rvhose orbital consists of a full l l  in-phase bondin-e combination
of the building block orbitals) to its top (r.vhose orbital is a fully out-of-phase
antibonding cornbination). In Fig.2.6 rve i l lustrate these fuily bonding and fully
antibonding band orbitals fbr two cases - the bottom involving s-type building
block orbitals. and tl iu'top involving p-type orbitals. Notice that when the energy
gap between the building block s and p orbitals is larger than is rhe dispersron
(spread) in energy rvithin the band ofs or band ofp orbitals, a band gap occurs
between the hishest rnember of the s band and the lowest member of the n band.
The splitt ing betr,veen the s and p orbitals is a propertv of the individual atoms
comprising the solid and varies among the elements of the periodic table. The
dispersion in energies that a given band of orbitals is split into as these atoniic

The energy
leve ls  a r is ing  f rom 1 ,  2 ,
3 ,  4 ,  and an  in f in i te
number  o f  o rb i ta ls .
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s  band

orbitals combine to form a band is determined by hou, srronglv the orbitals on
neighboring atoms overlap. Small overlap produces small dispersion. and larse
overlap yields a broad band.

Depending on horv many'alence electrons each buirding block contributes, the
various bands formed by overiapping the building block orbitals of the ciinstrtuent
atoms wil l be fi l led to various levels. For erample, if each orbital shou,n above has
a single valence electron in an s orbital (e.g.. as in the case of the alkali metals).
the s-band u'ill be half filled in the ground state u,ith u and B paired electrons.
Such systems produce very -{ood condumors because their partially filled bands
allor.l' electrons to move with very little (e.g.. only thermal) excitation among
other orbitals in this same band. on the other hand, for alkaline earth sysrems
rvith two s electrons per atom, the s band wil l be conrpletely fi l led. in such cases.
conduction requires excitation to the lowest members ofthe nearby p-orbital band.
Finally, if each building block were an Al (3s2 3pry atom, the s band wtruld be
full and the p band would be half-filled. Sysrems whose highest erlergy occupied
band is completely filled and for which the gap in energy to the lor.r'est unfilled
band is large are called insulators because they ha'e no way to easily (i.e.. with
Iittle energy requirement) promote some of their higher energv electrons from
orbitai to orbital and thus effect conduction. lf the band gap betrveen a filled
band and an unfilled band is small, it n.ray be possibre for therr.nal excitation (i.e..
coll isions rvith neighboring atoms or molecules) to cause excitation of electrons

Fu l l r  an l i bond ing

Fu l Jv  bond ing



Densi t ies of  s tates in  one,  two,  and three d imensions

from the former to the latter therebv inducing conductive behavior. An erample
of such a case is i l lustrared in Fig. 2.7. In contrast. svstems whose hi-shest ener,sy
occupied band is partiallv f i l led are conductors because they have litt le spacing
among their occupied and unoccnpied orbitals.

To form a senriconductor. one starts ',vith an insulator as shown in Fig. 2.g with
its f i l led (dark) band and a band gap betrveen this bancl and its empty (clear.) upper
band. lf this insulator rnaterial were synthesizecl r,vith a smallamount of ,.dopant"

whose "'alence orbitals have ener-uies betu,een the fi l lecl and empty bancis of the
tnsulator. one mav generate a semiconductor. If the dopant species has no valence
electrons (i.e.. has an empty valence orbitaly, it gives rise to an empty band lying
between the fi l led and empty bands of the insulator as shown in Fig. 2.ga. In this
case. the dopant band can act as an electron acceptor for electrons ercited (either
thermallv or by l ight) f iom the fi l led band inro rhe dopant band. once ele*rons
enter the dopant band charge can flow and the system becomes a conductor.
Another case is i l lustrated in Fig. 2.8b. Here, the dopant has its own band fi l led
but l ies close to the empty band of the insulator. Hence excitation of electrons
from the dopant band to the empty band can induce current to flow.

2.3 Densit ies of states in one, two, and three dimensions
When a large number of  neighbor ing orb i ta ls  over lap,  bands are
formed' However, the nature of these bands is very different in different
d imensions.

53
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Before leaving our discussion ofbands oforbitals and orbital energies in solids.
I want to address the issue ofthe density ofelectronic states and the issue ofrvhat
deternrines the energy range into which orbitals of a given band u,i l l  split. First.
lett recall the energy expression for the one- and tr','o-dimensional electron in a
box case, and let's generalize it to three dimensions. The general result is

E : L n l r 2 t i 1 ( 2 m L j ) .  ( 2 . 1 0 )

where the sum over./ runs over the nurnber of dimensions (one, two. or three),
and L.1 is the length of the box along the 7th direction. For one dimensron,
one observes a pattern of energy levels that grows with increasing n, and whose
spacing between neighboring energy levels also grows. However, in tr,,r,o and three
dimensions, the pattern of energy level spacing displays a qualitatively different
character at high quantum number.

consider first the three-dimensional case and, for simplicity, let's use a "box"

that has equal length sides Z. In this case, the toral energy E is th2#l2nrL:1
times Qrl + nf, + n).fne latter quantity can be thought of as the square of the
length of a vector R having three components,?_r, nt,, ft:. Now think of three
cartesian axes labeled nx,nt,, and n, and view a sphere of radius R in this space.
The volume of the I /8 sphere having positive values of ir.. , r ,,, and n_- and having

,-
!
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radius R is l l8(4/3;rRr). Because each cube having unit length along the i lr, t 'rr.,

and il, a-res corresponds to a single quantum wave function and its energy. the

toral number l/," '(6) of quantum states with positive frx, n,., and n. and with

energy between zero and E : (h2n2 l2m L21R2 is

The number of quantum states with energies betr.r.een E and E + dE is
(dilibrldE)dE, which is the density Q(E) of states near energy E:

o , -  
t l +  [ t a r t : 1 " ] r ,  , ) .  ( t . 1 2 )' ' :  8  \ ; "  L ;= l  a '  )

Notice that this state density increases as E increases. This means that, in the
three-dimensional case, the number of quantum states per unit energy gro$s;

in other words, the spacin-u between neighboring state energies decreases, very
unlike the one-dimensional case rvhere the spacing between neighboring states
grows as n and thus E grows. This growth in state density in the three-dimensional
case is a result ofthe degeneracies and near-degeneracies that occur. For exarnple,
t he  s ta tes  w i t h  n , ,  n . t . .  n : : 2 .  l .  I  and  l .  1 ,2 ,  and  1 ,2 ,  I  a re  degene ra te .  and
t h o s e  w i t h  n r . n \ . .  n -  : 5 , 3 .  I  o r 5 .  1 . 3  o r  1 , 3 , 5  o r  1 . 5 . 3  o r 3 .  1 . 5  o r 3 . 5 ,  I  a r e
degenerate and nearly desenerate to those having quantum numbers 4. ,1. I or l.
;1. :1. or 4. l. .1.

In the two-dimensional case. degereracies also occur and cause the density
ofstates to possess an interesting 6 dependence. In this case. we think ofstates
having energy E : (t i2ir2 l2m L21R:,but rvith Rl : rri + ni. The total number
ofstates havins cnersv between zero and 6 is

,  t  ] n L :  t
. \ . . . . , r  :  l r n -  :  t -  t  

\ , r ;  )

So, the densitl, of states beti.veen E and E -t d E is

erEr :  ++  :  + '  (1  r '  1
L t L  \  l f 1 -  , /

: ; ( i" l#1") (2",i(] '- ')

( 2 . r i )

( 2 . 1 4 )

That is. in this two-dimensional case. the number of states per unit energy is
constant fbr high E valLres ('uvhere the analysis above applies best).

This kind of analysis fbr the one-dimensional case gives

(2 .  l  s )

so the state density betrveen E and E -t d E is

,  .  t ' l

er t ) :  r r : . ( - J ! ! -  )  u - ' , , .  ( 2 .16 )
\  t r : T -  /

which clearly shows the lvidening spacing. and thus lower density, as one goes
to higher energies.
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These findings about densities of states in one. trvo. and three dimensions are
irnportant because. in various problems one encounters in studying electlonic
states of extended svstems such as solids and surfaces. one needs to knou, how
the number of states available at a siven total energy .E varies ll ith 6. clearlv. the
ans\ver to this question depends upon the dimensionality of the problem, and this
fact is rvhat I lvant the students reading this text to keep in mind.

2.4 The most elementary model of orbital energy spli t t ings:
Hiickel or t ight-binding theory

Nou'let's erarnine what deterrnines the energy range into which or-bitals (e.g , p"
orbitals in polyenes or metal s or p orbitals in a solid) split. To begin. consider two
orbitals. oue on an atom labeled A and another on a neighborins atom labeled
B; these orbitals could be. for example, the 1s orbitals of two hydrogen atoms.
such as Fig. 2.9 illustrates. However, the two orbitals could instead be til'o p"
orbitals on neighboring carbon atoms such as are showrr in Fig.2.l0 as they
form bonding and n* antibonding orbitals. In both of these cases, we think of
forming the molecular orbitals (Mos) @6 as l inear combinations of the aronric
orbitals (Aos) x, on the constituent atoms, and we express this mathematicallv
as follou's:

Two ls
o rb i t a l s  comb ine  t o
p roduce  a  o  bond ing
a n d  a  o "  a n t i b o n d i n g
m o l e c u l a r  o r b i t a l .

Two atomic
p- orbitals form a
bond ing  z  and
ant ibond ing  z  *

molecu la r  o rb i ta l .

,  s - ^
@ ^ :  )  L r ' . , Y , .

where the C1.,, ore called linear combination of atomic orbitals to forn molecular
orbital (LCAo-Mo) coefficients. The Mos are supposed ro be solutions to the
Schr<idinger equation in which the Hamiltonian H involves the kinetic ener_ey of
the electron as well as the potentials Z1 and zq detailing its attraction to the left
and right atomic centers:

(2 . t 7 \

H = - l i l 2 n y 2 - r L * l q (2 .  I  8 )
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In contrast, the Aos centered on the left atom A are supposed to be solutions ofthe
Schrodinger equation whose Hamiltonian is H : -/1? l2nty2 -f Vt,and the AOs
onthe right atorn B have H : -h2 l2mV2 + Vn. Substitr.rt ing 0* :L.Cx.uXu

into the MO s Schrodinger equation HQr : € rQr and then multiplying on the
leftbythecomplexconjugateof x7, andintegratingoverther,0 andQ coordinates
of the electron produces

( 2 . 1 9 )

Recall  that the Dirac notat ion (a I b) denotes the integral ofa* and 6, and (a loplb)
denotes the integral ofa* and the operator op acting on D.

In what is kno'uvn as the Hiickel model in organic chemistry or rhe tight-bin<1ing
model in solid-state theor1,, one approximates the integrals entering into the above
set of l inear eqr-rat ions as fol lows:

( i)  The diagonal intesral t ,X,,1-tt)  l2nY) + Li,  + tr11X6) involving the AO centered
on thc r ight atom and labeled 17, is assumed to be equivalent to
(,X1, -h! l2nV) * IrnlXr.),  which means that net attract lon oi-this orbital to the left
atomic center is neglected. Moreover. this integral rs approximated in terms of the
binding energv (denoted cr, not to be confuscd rvith the electron spin l i rnctron a)
for an electrt tn that occupies the 17, orbital:  | ,y,,  - l i  l2my) , t  l /plXr) = trr, .  The
physical rreaning of ar is thc kinetic energv of the elcctron in 17, plus the
attract ion of this elc-ctrorr to the'r ight atomic center*,hi le i t  resides in 17,. Of
coursc. an analoqous approximation is made for the diagonal integral invol i  ing
x , , ;Q, , ) - / t :  l2 rnY:  +  L ' r .1x , ,y  -  a , , .

( i i )  The off-diagonal inregrals \xt,)  -  F l2nv. + t i  + L\11x,,\1 are expresserJ in
terms of a pararrerer fJ,, .7, rvhich relates to the kinetic and potential enerey of the
elcctron u,hi lc i t  reside-s in the "overlap rcgion" in which both X,, and X7, are
non-vanishing. This region is shorvn pictoriai ly in Fig. 2. I  0 as the region rvhere the
left and r ieht orbitals touch or overlap. The magnitude of 13 is assumed to be
proportional to the ovcrlap S,,.7, betrveen the two AOs: .t,.r, : e, I Xr,) .lt turns out
that f is usuallv a negatir,,e qr.rantity. which can be seen by writing it as
(/. t , i - l t :  l2ntv: + I \<1i l  i  ( ,xr)t ' t lx).  Since x,,  is an eigenfuncrion of
-il 12ntV: a lzo having the eigenvalue a,,, the first term is equal to s, (a negauve
quanti tv) t inres (X1, I  X,,).  the overlap S. The sccond quanti ty \Xr, l l / r lX") is equal to
the integfal of the overlap density 17,Q.)tr"(r) mult ipl ied by the (negative)
Coulorrrb potential fbr attract ir"e interaction of the electron with the left  atomtc
center. So. r,r 'henever 17,(r.) and 1,,(r)have posit ive overlap, p r.r ' i l l  turn out
negattVe.

( i i i )  Final ly, in the most elernentary I- l t ickel or t ight-binding model, the overlap
integrals t,X,, I ft,l - t,./, are neglected and set equal to zero on the right side of
the matrir ciqenvalue equation. However, in some HLickel models, overlap
between neiehboring orbitals is expl icr lv treatc'd so in some of the discr.rssion
below '"ve u'ill retain .!, ,,.

57
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With these Hiickel approximations. the set of equations that determine the

orbital energies €6 and the corresponding LCAO-MO coefficients C'(.(? are \\ 'r it-

ten for the trvo-orbital case at hand as in the first 2 x 2 matrix cquations sho\\'n

below:

(  2 .10  )

(2 .2  I  )

These equations reduce u'ith the assulxption of zero overlap to

[ "  ' ] [ :  l : , I l  : l  [ :  I
l f i  " J L c , l  t . s  r J L ( , { J

*'hich is sor.netimes u,ritten as

|  "  - '  / r  - .s .1 [ . . . ]  -  ln l
[ r - . s  " - . . ]  L . - . 1  

- L o . l

The a parameters are identical if the two AOs x,, and Xr, are idcntical. as r"'ould

be the case for bonding betrveen the tu'o ls orbitals of lwo H atollts or nt'o )11-

orbitals of tu'o C atoms or tr.vo 3s orbitals of tr",o Na atoms. If the left and right

orbitals were not identical (e.g., for bonding in Hel-l+ or for the:r bonding irr a

C-O group). their o values would be different and the Hiickel matrix problen.t

lr 'ould look l ike:

[ "  n l [ ' l : , I  s ] [ c I
l f , " l L C o . l  L s  r . l  L C R I

r l  l i t

To find the MO energies that result frorn combining the AOs. one must f ind

the values of e for which the above equations are valid. Takin-q the 2 x 2 matrix

consisting of e times the overlap matrix to the left-hand side. the above set of

equations reduces to Eq. (2.2 1). It is knou,n from trratrix al-uebra that sucli a set

ofl inear homogeneous equations (i.e., having zeroes on the right-hand sides) can

have non-trivial solutions (i.e., values of C that are not simply zero) only if the

determinant of the n.ratrix on the left side vanishes. Setting this deteminant equal
to zero giles a quadratic equation in rvhich the e values are the unknor.vns:

[ "  , . l [ , - l  = . I r  o l I c , ' ' l
L f , " _ l  L c * . 1  L 0  r l L . ' i l

( a - e ) : - ( B - o S ) r = 0 .

This quadratic equation can be factored into a product

( a  -  f  - e  * s S ) ( a  +  P  -  € - s S )  :  0 .

which has trvo solutions

e : ( a * p ) / ( l  + S ) .  a n d  e  =  ( a  -  F ) l ( l  -  S ) .

(  2 . : 2  )

(2.24)

(2.25 )

(2.26)

As discussed earlieq it rums out that the B values are usually negative. so the
lor.rest energy such solution is the e : (a * P) l0 + S ) solution, which gives the
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energy of the bonding Mo. Notice that the energies of the bonding and antibond_
ing iVlos are not symmetrically displaced from the value a within this \.erslon
of the Htickel model that retains orbital overlap. In fact, the bonding orbital l ies
less than p below cv, and the antibonding Mo lies more than B above a because
of the I * s and I - s factors in the respective denominators. This asymmer-
ric lou.ering and raising of the Mos relative to the energies of the constituent
Aos is commonly observed in chemical bonds; that is, the antibonding orbital
is more antibonding than the bonding orbital is bon<iing. This is ar.rother im-
portant thing to keep in mind because its effects pervade chemicar bondins and
spectroscop)'.

Having noted the effect of inclusion ofAo overlap effects in the Hiickel moder,
I should admit that it is far more common to utilize the simplifieci version of the
Hiickel model in which the s factors are ignored. In so doing, one obtains patterns
of N'Io orbital energies that do not reflect the asymmetric splitting in bonding and
antibonding orbitals noted above. However. this simprified approach is easier to
use and ofl'ers qualitatively correct Mo energy orderin-es. So, let's proceed with
our discussion of the Hiickel model in its simplif ied version.

To obtain the LCAo-Mo coerfcients corresponding to the bonding and anti-
bonding Mos. one substitutes the corresponding a values into the l inear equarrons

t 1 ) 1 \

q q

f"; ' .1,]tr] : t : ]
and soh'es for the C,, coefficients (actually, one can solve for alr but one c',,. and
then use norrnalization of the Mo to deterrnine the final c,, ). For example. for the
bonding N,lO. lve substitute e : a * B into the above matrix equation and obtain
two equations fbr C1 and Cp:

- f C t - t  d C n : 0 .

I J C L - p c R - 0 .

(2 .28  )

12 )9 )

(2.-r0)

These tr.vo equations are clearly not independent; either one can be solved for one
C in terms of the other C to sive

Cr = Cn.

which means that the bonding MO is

Q : C J x r * x i l . ( 2 . 3 1 )

The final unknor,vn, C1, is obtained by noting that @ is supposed to be a norrnarized
function (A I A) : l. Within this version of the Hrickel model, in which the
overlap s is neglected the normalization of @ leads to the followine condrrion:

|  :  @ |  d )  =  C l ( t , x t l  xL )  +  ( xRxR) )  :  2C l .
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with the final result depending on assuming that each 1 is itself also normalized.
So,  f ina l ly .  we know that  C1 :11 l2) l  

: .  and hence the bonding MO is

O : , l l 2 ) t ' � e r + x * ) r l  l ' l i

Actual ly .  the solut ion of  I  :2C' i  could a lso have y ie lded C' r :  - ( l /2)1 t2 and
then vr,e would have

O :  - , l t l 2 ) t t . ( x r  *  x n ) (2.3.1)

These two solutions are not independent (one is just - I t inres the other). so only
one should be included in the l ist of MOs. Horvever. either one is just as good as
the other because. as shown very earl1, in this text. all ofthe ph1'sical properties
that one computes from a wave function depend not on ry' but on r/r*{r. So. tu,o
u'ave functions that differ from one another by an overall sign factor. as u,e have
here, have exactly the sar.ne rlr*tb and thus are equivalent.

ln like fashion. we can substitute € : cr - p into the matrix equation and solve
for the C1 and Cp values that are appropriate for the antibonding MO. Doing so
glves us

Er :  1 t  121 i )  (xr  -  Xr . ) (2 .3  5  )

or. alternatively.

O"  :  ( l l 2 l t ' 2 (Xn  *  X r ) .  ( 2 .36 )

Again. the fact that either expression for @* is acceptable shows a property of
all solutions to any Schrodinger equations; any multiple of a solution is also a
soiution. In the above example, the two "answers" for @* differ by a multiplicative
fac to ro f ( -1 ) .

Let's try another example to practice using Hiickel or tight-binding theory. In
particular, I'd like you to imagine two possible structures for a cluster of three
Na atoms (i.e., pretend that someone came to you and asked what geometry you
think such a cluster would assume in its ground electronic state). one linear and
one an equilateral triangle. Further, assume that the Na-Na distances in both such
clusters are equal (i.e., that the person asking for your theoretical help is willing
to assume that variations in bond lengths are not the crucial factor in determining
which structure is favored). In Fig.2.l l, I show the two candidate clusters and
their 3s orbitals.

L inear  and
equ i la te ra l  t r iang le
structures of sodium
Inmer.
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Numbering the three Na atoms' valence 3s orbitals h, X2, and X3, we then set

up the 3 x 3 Htickel matrix appropriate to the two candidate structures:

o l

(2.31)

for the linear structure (n.b., the zeroes arise because 11 and Xj do not overlap
and thus have no p coupling matrix element). Alternatively, for the triangular
structure. we find

[ "  e  o l
l p  o  p l
L o  P  d )

[ " p e 1
l P  "  P l
L P  p  " )

(2.38)

as the Hiickel matrix. Each of these 3 x 3 matrices wil l have three eigenvalues
that we obtain by subtracting e from their dia_eonals and setting the determinants
ofthe resulting matrices to zero. For the l inear case, doing so generates

( a * e ) r  - 2 f t ( o  - e ) : 0 ,

and for the trian_qle case it produces

{ o  -  r ) '  -  3 d : ( o  -  e )  +  2 d r  : 0

(2 .3e)

(:..10)

The first cubic equation has three solutions that give the MO energies:

s : c v * ( 2 ) r  : f , .  F : ( r .  a n d  r = d - ( 2 1 t r . . U ,  ( : . , 1 1 )

for the bonding. non-bonding and antibonding MOs, respectively. The second
cubic equation also has threc solutions

t : : a * 2 f .  s : a - f l .  a n d  e : u - 8 . (  2 .42)

So. for the linear and triangular structures, the MO energy patterns are as shou'n
t n  r l s .  l .  I  l .

- a - Q)1/2p

- c - B

- a + (z)tt2|

Energy
order ings  o f  mo lecu la r
orb i ta ls  o f  l inear  ( le f t )
and t r iangu lar  ( r igh t )
sod ium t r imers .- c + 2 p
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For the neutral Na: cluster about r".hich vou were asked you have three 'u'alence

electrons to distribute among the lowest available orbitals. In the l incar case. we
place tr '" 'o electrons into the lowest orbital and one into the second orbital. Doing
s o p r o d u c c s a t h r c e - e l e c t r o n s t a t e w i t h r t o t u l  e r r e r g l o f  6 :  l t u  +  l '  l , ' l ) +  o :

3cv * 2 2t i2 B. Altematively, for the triangular species. we put trvo electrons into
the lowest MO and one into either of the degenerate MOs resulting in a three-
electron state with total energl' E :3a f 38. Because li is a uegative quantitv.
the total energy ofthe triangular structure is lower than that ofthe l inear structure

r  ^ l  1
s f n c c - i  >  I l  - .

The above example i l lustrates how we can use Htickel"tight-binding theor) to
make qualitative predictions (e.g.. which of trvo "shapes" is l ikel.v to be of lor"'er
ener'-uy). Notice that all one needs to knou'to apply' such a model to any set of
atomic orbitals that overlap to form MOs is:

(i) the individual AO energies a (which relatc to the electronegativitv of the AOs) and
(ii) the degree to which the AOs couple (the B pararreters *'hich relate to AO or,eriaps).

Lett see if you can do some of this on your own. Using the above results.
uould you expect the cation Nai to be l inear or triangular? What about the anron
Na., ? Next. I u,ant you to substitute the MO enersies back into the 3 x 3 matrix
and find the C1. C2, and C3 coefficients appropriate to each of the three MOs of
the l inear and ofthe triangular structure. See ifdoing so leads you to solutions
that can be depicted as shor,l 'n in Fig.2.l3" and see if you can place each set of
MOs in the proper energy ordering.

@
(-a-a-\\_\vThe

orbitals o{
l inear  and t r iangu lar
sod ium t r imers  (no te ,
they are not energy
ordered).
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(2..13 )

(l -+4)

bJ

Ethylene
with four C-H

bonds, one C-C o bond,
and one C-C z  bond.

No'v. I want to show you hor'v to broaden your horizons and use tight-binding
theory to describe ail of the bonds in a more compricated molecule such as
erhvlene shown in Fi-e' 2.14. within the moder described above, each parr ot'
orbitals that "touch" or overlap -9ives rise to a 2 x 2 matrix. More correctry, ail
n of the constituent Aos form an n x n matrix, but this matrix is broken up rnro
2 x 2 blocks whenever each Ao touches only one other Ao. Notice that this did
not happen in the trian-uular Na3 case where each Ao touched two other Aos. For
the ethylene case, the valence AOs consist of (a) fbur equivalent C sp: orbitals
that are dire*ed toward the four H atoms. (b) four H ls orbitals, 1c) t*.o c spr
orbitals directed toward one another to fo'n the c-c o boncl and (d) two c p.,
orbitals that wil l forn.r the c-c z bond. This totar of l2 Aos generates six Hticker
matrces as shor.vn bero*,: we obtain one 2 x 2 matrix for the c-c o bond oi-the
form

I o.o, d.o,.o,-l
| 1,n,..0, a,o, J

and one 2 x 2 matrix lor the C-C z bond of rhe form

[ ",' r)r,,. ]
lfo. w "n. l

Finally. we also obtain four identical 2 x 2 n.ratrices fbr the c-H bonds:
r -

|  0,p, l ,n,.n 1

L p.n, n ", J 
Q'45)

The above marrices rvill then produce (i) four identical C_H bondin_e MOs
havingenergies e:  t /2{(a,* ryc)  _ [ (aH _ac) :  *  1p2l r ,z ] , f i i i iou. :a.nt .uf
C-H antibonding MOs having energies t* : I/21@u * a6) f [(ns _ oc)r +472l t i2 | ,  ( i i i )  one bonding C-C r  orb i ta l  wi th E:epr  + f l ,  ( iv)  a parrner
antibondin-e C-C orbital with e* : dp, _ F, &) a C_C o bonding MO with
t : ospr * p ' and (vi) its antibonding partner with e* - cy,pr p. tn att of these
expressions. the B parameter is supposed to be that appropriate to the specific
orbitals that overlap as shown in the matrices.
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If you wish to practice this exercise of breaking a lar_ue rnoiecule down into
sets of interacting Aos. try to see what Hiicker matrices y.ou obtain and r.,,tat
bonding and antibonding Mo energies you obtain for the 'alence orbitals of
methane shown in F ig.  2.15.

Before leai' ing this discussion of rhe Hrickerrti_cht-binding nroder. I need to
stress that it has its ffar.vs (because it is based on approximations and rnvolves
neglecting certain terms in the Schrcidinger equation). For example. it predicts
(see above)that ethylene has four energeticallv identical c-H bonding Mos (and
four degenerate c-H antibonding Mos). Hou,ever, this is not what is seen when
photoelectron spectra are used to probe trre energies of these Mos. Likeu,ise. it
suggests that methane has four equivalent C-H bonding and antibonding orbitals.
r, ' 'hich again is not true. It turns out that. in each of these two cases lethylene and
nrethane). the experiments indicate a grouping of four i lcarlr. iso-ener_qetic bond_
ing Mos and lour nearry iso-energetic antibonding Mos. Horve'cr. there is some"splitt ing" among these clusrers of four Mos. The splitt ings can be interpreted,
within the Hrickel moder. as arising from couplirgs or interactions anron_c. for
example. one sp2 or sp3 orbital on a given C atom and another such orbital on the
sanre atom. Such coupl inus cause the,  v  r r  HLickel  marr ix  to  not  b lock_parr i r ior r
lnto groups ofl x 2 sub-matrices because no*.there exist off-diagonal p factors
that couple one pair of directed Aos to another. when such couplings are included
in the analysis. one finds that the clusters ofN{os expected to b.,l.g.nerate are
not. but are split just as the photoelectron data suesesr.

2.5 Hydrogenic orbitals

The hydrogenic atom problem forms the basis of much of our thinking
about atomic structure. To sorve the corresponding schrodinger equation
requires separation of the r, 0, and g variables.

The Schrcidinger equation for a single particle of nass p movi'g in a central
potential (one that depends only on the radial coordinate r) can be written as

l i  1  a :  a :  a : \_-  I  I  - l -  +  l -  l , r ,  t  r ' l  : - - -  . - - . - \
2g  \  3 : i 2  a i l  

+  
o= t  ) ' l ' +  

I /  ( r  ' L :  + ' r 2  + : : )  t l t  :  E l t '  e46 )

or, introducing the short-hand notation V2:

Methane
molecu le  w i th  four  C*H
oo nos .

-lt2 /2mY2p * Illt = Ep

This equation is not separable in Cartesian coordinates (x,,i,,:) because of the
way r, 1', and ; appear together in the square root. However. it is separable i'
spherical coordinates where it has the form

- !  [ a  / . . , a / \ l  I  a  t .  a / \  t  d : t- ,w.  
L;  \ ' - ; /J  *  ; , * ,  ( ' ' " ,  *  i  -  _.* ;  # -  r  r , ' t , t '

(2.47)

-  - t i /2 rnv :g  +  v { / :  EV (  2 .48)
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Subtracting v(r)(r fron both sides of the equation and multiprying by -2{i
then moving the derivatives with respect to r to the right-hand side. one-obtalis

I  U /  a / i  \  |  A: , IJ  2ur)- : -  |  s in t t * - -  |s,nd dH \  dr l  I  *  
* ia #:  

-#r t  -  I tu ' t l r l t  -  
# ( , '#)

(2.+e)
Notice that, except fbr ry' itsell the right-hand side of this equation is a functron
ofr only; it contains no d or @ dependence. Let's call the entire right-hand side
F(rlrL to ernphasize this fact.

To further separate the d and @ dependence, we multiply by sin? g and subtract
rhe d derivative terms from both sides to obtain

# 
:F(,")ry' sinr o - sinoj_*(.'"r#)

o5

Norv we have separated the @ dependence from the 0 and r dependence. we
now introduce the procedure used to separate variables in differentiar equations
and assume ry' can be written as a function of @ times a function of r) and 0:
,lr : A@)Q(r.0). Dividin_e by Oe, we obtain

*# :  t  (o,s in2 t )e-  s ine$ 
G'"r#))

(2.s0)

( 2 . 5 1 )

o " + t 1 : o : o (2 .52 t

This equation should be familiar because it is the equation that we treared much
earlier when we discussed the:-component of angular momentum. So. its further

Now all ofthe / dependence is isorated on the left-hand side; the right-hand side
contalns only r and d dependence.

whenever one has isolated the entire dependence on one variabre as we have
done above fbr the @ dependence. one can easily see that the Ieft- and right-hand
sides of the equation must equal a constant. For the above exampte.the tert-
hand side contains no r or g dependence and the right-hand side contains no p
dependence. Because the two sides are equal, they both must actualiy contain no
r,0, or @ dependence; that is, they are constant.

For the above example, we therefore can set both sides equar to a so-called
separation constant that we call -m2.lt wil l become clear shortly why we have
chosen to express the co'stant in the form of minus the square of an integer.
You may recall that we stuclied this same @ equatron earlier and learned how the
integer rr arises via the boundary condition that Q and Q * 2z represent identical
geometries.

2 .5 .1  The  O  equa t ion

The resulting @ equation reads (the "symbor is used to represent second creriva-
tive)
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analysis should also be familiar. but, for completcness. I repeat much of it. The
above equation has as its most general solution

Q = Ae""Q +  Be 
tn l r ) (2 .53  )

Because tlre rvave functions of quantum mechanics represent probabil ity densi-
ties. they r.nust be continuous and single-valued. The lattel condition, applied to
our <D function. means that

O ( d ) : Q ( 2 ; t * 4 t l r r  5 4  l

. 1e i " " 1 ' ( l  -  ' J r i n t , '  +  Be  i * a ( l  -  c  : " " - ;  :  g .  ( 2 .5 -5 )

This condition is satisfied only when the separation constant is equal to an integer
m :0,  +1.  +2.  . . .  and provides another  example of  the ru le thal  quant izat ion
comes from the boundary cor.rditions on the r.vave function. llere nr is restricted
to certain discrete values because the wave function must be such tl.rat when you

rotate through 2:r about the :-axis. you must get back \\4rat you started vn,itl.r.

2 .5 .2  The  O  eoua t ion

Norv returning to the equation in which the @ dependence was isolated from the
r and 0 dependence and rearranging the 0 terms to the left-hand side, rve have

1  i i  /  d O \  n r : O

" "p  a6  \ s i n6 - i /  
-  

* t  
:  F t r )Q  (2 . -56 )

In this equation we have separated 0 and r variations so we can further decompose
tlre wave function by introducing Q : O(6)R(r), which yields

where a second separation constant, -),, has been introduced once the r and
0 dependent terms have been separated onto the right- and left-hand sides,
respectively.

We now can write the d equation as

t  r ) G ) \  l r l  F t r t R
l s i n 6 - l -  * :  ^  = - i .
\  d o /  s l n - H  ^

##(' '",#)-#--,(,,

. . , d
=  - s l n d -

dz

1 1 a
O r i"B ap

(2 .58  )

where n is the integer introduced earlier. To solve this equation for O, we make
the substitutions z : cos I and P(z) : O(9), so JT -= : sin d, and

0  0 2 0
Ae 60 0z

(2.59l,
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The ran-qe of values fbrd was 0 < I < z, so the range for: is -l < : <
equation fbr O, when expressed in terms of P and:. becomes

I  /  , / P t  , r , ] P
-  l  r  l  -  - r  r - - -  l
2 1 " - = ' E ) - t - - = t - ) ' P : o

Noi.r' we can look for polynomial solutions for p, because : is restricted to be
less than unity in magnitude. lf m :0. we first let

o t

p - f . , - r-  
/ - " t -
t=1)

and substitute into rhe differential equation to obtarn

-
\ - r l  - 1 ) r l . J  r ,  I  \ - . ,  , . ,
/ - , " ' - ' , ' ,  

- l l t r , - : - - ' - L , f  L l l k t r l : "  - ; f  t t . : a  = 0 .
{ = 1 ,

Equating like powers of ; gives

t t t ( k ( k ] _ l ) - ^ \

Note that for lar_sc- values of l

l .  The

(  2 .60  )

(2 .61 )

(2.62)

(  1 .6 i  )

(2.64)

Since the coefhcicnts do not decrease with f for large t. this series wil l diverge
for-- : *l unless it truncates at f inite order. This truncation only happens if the
separatron constant i obe-v"s ), : l( l * l). where / is an integer. So. once agtin.
we see that a boundarv condition (i.e.. that the wave firnction not diverge and thus
be normalizable in this case)gil 'es rise to quantization. In this case. the values of
i are restricred to 1(/ * I ): before. we saw that ,r is restricted to 0. * l. +2. . . .

Since the'above recursion relation l inks every other coefflcient. we can choose
to solve for the evcn and odd functions separately. choosing d1, and then deter-
mining all of the even r1r in terms of this,q,. fbllor^,ed by rescaling all of these
ar to lrakc the function normalizcd. generates an e\.en solution. choosing a7 and
determining all of the odd a1 i '  l ike rnanner eenerates an odd solution.

For / : 0. the series truncates after one term ancl results in po(:) : L For
/  =  I  t he  same th ing  app l i es  and  p1  ( : ) : ; .  Fo r  1  -  2 .a t :  _ ' 6+ :  _3ao  ,  so
one obta ins P: :32)  -  l .  and so on.  These polynomials  , . .  . . l l .d  Legencl re
polvnominls .

For the more general case where m I 0. one can proceed as above to gener-
ate a polynomial solution fbr the o function. Doing so results in the followine
solut ions:

, , ^ _ , -  t r ( t + i )  _ ,
, k  f r , ( l + i ) ( r + i ) - '

- ,,, ,.1 ,,) p.t -\
I > t ' t t _ r _ t t  _ l  , i  

"  t t \ - l
|  |  t -  t  -  

\  r  -  _  . /
d : t n t

(2.(,5)
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These functions are called associated Legendre polynomials. and they constitute
the solutions to the O problem for non-zero rr r. 'alues.

Tlre above P and ei' '4'functions. whe're-expressed in terms of 0 and @. yield
the full angular parr ofthe wave function for any centrosymmetric potential. These
solutions are usuall l, written as Y1.,,,(0. Q): pi,,rcose )er) tQ exp(inrQ), and
are called spherical harmonics. They provide the angular solution of the (r. 0. d)
Schrodinger equation for anl problem in rvhich the potential depends onl1, sn 11-r.
radial coordinate. Such situations include all one-electron atoms and ions ie.g.,
H, He*, Li*+. etc.). the rotational motion of a diatomic rnolecule (u,here the
potential depends only on bond Iength r). the motion of a nucleon in a spherically
symmetrical "box" (as occurs in the shell model of nuclei). and the scattering of
two atoms (u'here the potential depends or.rly on interator.l l ic distance).The [.,,,
functions possess r,arying numbers of an-{ular nodes. u,hich. as noted earlier.
give clear signatures of the angular or rotational energy content of the wave
function. These angular nodes originate in the oscil latory nature ofthe Legendre
and associated Legendre polynomials p,"'(cosd); the higher / is. the more sign
changes occur within the polynomial.

2 .5 .3  The  F  equa t ion

Let us now turn our attention to the radial equation, which is the only place that the
explicit form ofthe potential appears. Using our earlier results for the equatlon
obeyed by the R(r) function and specifying v(r) to be the coulomb potential
appropriate for an electron in the field of a nucleus of charge *Ze, yields

l  d  / . d R \  f 2 u / _  Z e z \  t ( t  + t t l r
F t \ ' - , 1 , ) + L f \ " ; ) -  . :  J n : o  

{ 2 6 6 )

we can simplify things considerably ifwe choose rescaled length and energy units
because doing so removes the factors that depend on p,li,and e. we introduce a
new radial coordinate p and a quantity o as follows:

,  :  ( - t : u  \ i  , - .
\ r /

, ,  7 )  . , 1
,  )  F Z  C

2Ett

Notice that if E is negative, as it will be for bound states (i.e.. those states with en-
ergy below that of a free electron infinitely far from the nucleus and with zero kin-
etic energy), p is real. on the other hand, if E is positive, as ir will be for states that
lie in the continuum, p will be imaginary. These two cases will give rise to quali-
tatively different behavior in the solutions ofthe radial equation developed below.

We now define a function S such that S(p) : R0.) and substitute S for R to
obtain

\ 2 . 6 7  )

i j ;Gf l . ( - i  - '#+1)s:o (2.68)
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The differential operator terms can be recast in several ways using

d 2 s  z d s  I  d 1
; - . T  

-  
, , t p S ) .ap -  pL tp  pL lp -

The strategy that we norv follow is characteristic of solving second order
diff-erential equations. we will examine the equation for s at large and small p
values. Having found solutions at these limits, we wil l use a power series in p to
"interpolate" bet'"veen these two limits.

Let us begin by examining the solution of the above equation at small values
of p to see how the radial functions behave at small r. As p + 0. the second term
in the brackets in Eq. (2.68) wil l dominate. Neglecting the other two terms in the
brackets. we find that, tbr srnall values of p (or r ), the solution should behave like
pL and because the tunctio'must be normalizable. we must have r > 0. Since
z can be any non-negative integer. this suggests the followin-e more general form
for S(p):

S(p )  x  pL  e -u1 (2.70)

This form rvil l  insure that the function is normalizable since S(p) * 0 as r * eq,
forall l , as long as p is a real quantity. If p is imaginary, such a form may not
be normalized (see below fbr turther consequences).

Turning now to the beha'ior of s for large p. rve make the substitution of .!(p)
into the above equation and keep onlv the terms with the largest porver of p (e.g.,
the first term in brackets in Eq. (2.68)). Upon so doing. rve obtain the equation

a2 pt g un : 
!o' '  

o ", '
t : . 7  |  )

which leads us to conclude that the exponent in the large-p behavior of s i. u : j.
Having fbund the small- and large-p behaviors of s(p), we can take s to have the
following form to interpolate betrveen large and small p-values:

S(  p )  :  pL  e -  / ' t 2  P  1  p1 . \ / - . t L )

where the function P is expanded in an infinite power series in p as p(p) :

Lorpr. Again substituting this expression for S into the above equation we
obtain

P " p  +  P ' ( 2 1 t 2  -  o l *  P ( o  -  Z  -  l ) : 0 r  a  7 l  I

and then substituting the power series expansion of p and solving for the ai,s we
arrive at a recursion relation for the ai. coefficients:

( A - o * L + l ) a t

( r + l ) ( f t + 2 1 + 2 ) (2.71)

For large k, the ratio of expansion coefficients reaches the limit a r,+r I a t : I I k.
which has the same behavior as the power series expansion of ep. Because the

69
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po$'er series expansion of P describes a function that behaves l ike e/, fbr large p.
the resulting S(p) function vr'ould not be nonnalizable because tlre e-pr' l factor
would be overw'helmed by this e/' dependence. Hence. the series expansion of p
must truncate in order to achieve a normalizable "! function. Notice that i lp is
imaginarv. as it rvil l  be if E is in the continuum. the argument that the series rnust
truncate to avoid an exponentiallv dii,er-sing function no longer applies. Thus.
we see a key difference betu'een bound lwith p real) and continuum (u,ith p
imaginary) states. In the former case. the boundarv condition of non-dirersence
arises: in the larter. it does not because exp(p/2) does not diverge if p is
rmaginary.

Totruncateatapolynomial  ofordern ' .  wemusthave n,  -  o  + L + I  =0.  This
implies that the quantity o introduced previously is restricted to o- : n' t L * l.
which is certainly an integer; let us call this integer n. If u,e label states in order
of  increasing n :1.2.3.  . . . .  we see that  doin-s so is  consistent  wi th speci fy ing
a rnaximum order  (n ' )  in  the p(p)  polynomial  n '  :  0 .  l .  2 .  . . .  a f ter  u, ,h ich the
l-value can run from Z : 0, in steps of unity. up to I : n _ 1.

Substituting the integer n for o, we find that the energy levels are quantized
because o is quantized (equal to l):

- ' J

f  l l L - c. : _:-;__;
: I T  I I .

and the scaled distance turns out to be

{ - .  / t  }

Zr
aorl

(2.761

Here, the length as is the so-called Bohr radius (ao : li2 1 ,rnz); it appears once the
above expression for f is substituted into the equation for p. Using the recursion
equation to solve for the polynomial's coefficients a1, for any choice of r and /
quantum numbers generates a so-called Laguerre polynornial; p,,_1_1(p). They
containpowers ofp fromzerothrough n - L - l. and theyhave r - r - I sign
changes as the radial coordinate ranges from zero to infinity. It is these sign
changes in the Laguerre polynomials that cause the radial parts of the hydrogenic
wave functions to have n - L - 1 nodes. For example, 3d orbitals have no radial
nodes, but 4d orbitals have one; and as shown in Fig. 2.16.3p orbitals have one
while 3s orbitals have two. once again, the higher the number of nodes. the hieher
the energy in the radial direction.

Let me again remind you about the danger of trying to understand quantum
wave functions or probabilities in terms of classical dynamics. what kind of
potent ia l  z( r )wouldgiver iseto, forexample, the3sp(r)p lotshowninFig.2. l6?
classical mechanics suggests that p should be large where the particle moves
slowly and small where it moves quickly. So, the 3s p(r) plot suggests that the
radial speed of the electron has three regions where it is low (i.e., where the peaks
in P are) and two regions where it is very large (i.e., where the nodes are). This. in
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(2.77\

depend on the ir and / quantum numbers and are given in terms of the Lasuerre
polynomials .

t l

Plots of the
rad ia l  par ts  o f  the  3s  and
3p orb i ta ls .

turn, suggests that the radial potential z(r) experiencecl by the 3s erectron is high
in three regions (near peaks in p) and low in two regions (and at the nucreus). of
course. this conclusion about the form of v(r) ls nonsense and again i l lusrrates
how one must not be drai.vn into trying to think of the classical motion of the
particle. especially lor quantum states with small quantum number. In fact, the
low quantum number states of such one-electron atoms and ions have their radial
P(r) plots focused in re-qions of r-space where the potential -Ze2 1r is most
attractive (i.e.. lar_gest in magnitucle).

Finally. we note that the energy quantization does not arise for states lylng in
the continuum because the condition that the expansion of p(p\terminate does
not  ar ise.  The solut ions c l f the radia l  equat ion appropr iate ro rh.s .  scatrer ing srates
(which relate to the scattering motion of an electron rn the field of a nucleus of
charge Z) are a bit outside the scope of this text. so we will not treat them further
here. For the interested student, they are treated on p. 90 ofthe text by Eyring,
Walter, and Kimball.

To review separation of variables has been used to solve the fulr (r. {), Q)
Schrridinger equation for one electron moving about a nucleus of charge Z.The
0 and Q solutions are the spherical harmonics yt.,,(0,@). The bound-state radial
solutions

R, , . 7Q)  :  S (p )  =  pL  s - r ' / 2  P , - r - r ( p )

€

!
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2 .5 .4  Summary

To sunrmarize. the quantum numbers L and, nt arise through boundary conditions
requ i r i ng t l t a t i l t ( 0 )  beno rma l i zab re ( i . e . "no td i ve rge )  anc l t t r ( 4 t r : t / r ( 4 t t 2 r \ .
The radial equatio'. which is the o'ly prace the potenriar energy e'ters. is found
to possess both bound states (i.e.. statcs whose energies l ie belou.the asynrptote
a t  *h i ch  t he  po ren r i a l  r a r r i shes  and  the  k ine r i c  ene rg l  i s  ze r t r )  c ' d  con l i r r r un i
states lying energeticall l , above this asynrptote. The resulting lryclroeenic u,ave
funct ions (angular  and radiar)and energies are sunrmar ized on pp.  133-r36 in
the text by Pauling and Wilson forr up to ancl including 6 ancl I up to -5.

There are both bound and continuum sorutions to the radiar Schrcidinger
equation for the attractive coulornb potential becausc. at cnelgies bel,r.r,, the
asymptote. the potential confines the particle between r : 0 and an outer turnin_9
pornl. whereas at energies above the asymptote. the particle is no longer confined
bv an outer  turn ing point  (see Fig.2. r7) .  The solut ions of th is  one-electron
proble'r fornr the qualitative basis for n.ruch of atomic and nrolecular orbital
theory. For this reason. the reader is encouraged to gain a firr.rer unclerstandin_rl
ofthe nature ofthe radial and angular parts ofthese *,ave funcrions. The orbitals
that result are labeled b,v n. L. and,r quantur, nurnbers for the lround states and
by z and ,,r quantum numbers and the energy 6 for the continuur.n states. Much
as the particle-in-a-bor orbitals are used to qualitatively clescribe z-electrons in
conjugated polyenes, these so-called hydrogen-like orbitals pro'ide qualitative
descriptions of orbitals of atoms with nrore than a single electron. By introducing
the concept of screening as a way to represent the repulsive interactions among
the electrons of an atom, an effective nucrear charge Zsl.ca.be used in place of
Z inthe rfln.1.n,.<nd 8,, to generate approximate atomic orbitals to be fi l led by
electrons in a rnany-electron afom. For example, in the crudest approximation
ofa carbon atorn, the two rs electrons experience the full nuclear attraction so
Zen:6 for them, whereas the 2s and 2p electror.rs are screened by the two ls

-r"a,,'l
0.0

'-"1
Rad ia l

potential for hydrogenic
aroms and bound and
cont inuum orb i ta l
energ ies .
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electrons, so 2"6 : 4 for them. Within this approximation, one then occupies
nvo 1s orbitalswith Z:6, two 2s orbitals with Z:4 and two 2p orbitals with
z - 4 in forming the full six-electron wave function of the lowest enersv state of
carbon.

2.6 Electron tunneling

Tunne l ing  is  a  phenomenon o f  quantum mechan ics ,  no t  c lass ica l  mechan-
ics. l t  is an extremely important subject that occurs in a wide variety of
chemica l  spec ies .

Solutions to the schrodinger equation display several properties that are very
different from what one experiences in Newtonian dynamics. one of the most
unusual and important is that the particles one describes using quanfum mechanics
can move into regions of space where they would not be "allowed" 

to go if they
obeyed classical equations. Let us consicler an example to i l lustrate this so-cal led
tunneling phenomenon. Specifically, we think of an electron (a particle that we
likely would use quantum mechanics to describe) moving in a direct ion we wil l
cal l  R under the inf luence ofa potential that is:

( i)  Inf ini te fbr R < 0 (this coulcl for example. represent a region of space rvithin a
solid material rvhere the electron experiences very repulsive interactions ,,vith other
electrons ):

(ii) constant a'd ne-eative for some range of R betrveen R : 0 and R,,,", (this could
represent the' attract ive interaction of the electrons with those atoms or molecules
in a f ini te region of a sol id):

(iii) Constant and repulsive by an amount AI/ + D" fbr another finite region frorn R*o,
to R,"a^ + d lthis could represent the repulsive interactions betrveen the electrons
and a layerof molecules of thickness 6 lying on the surface of the sol id at Rn,,");

( iv) constant and equal to D. f iom R,,,",  + 6 to inf ini ty (this could represent the
electron being removed from the solid" but with a work function energy cost of D",
and moving fieely in the vacuum above the surface and the ad-laver). Such a
potential is shorvn in Fis. 2. I  8.

R.r* Rn,u" + d

Electron position coordinate R +
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The pieceu'ise nature of this potentiar allows the one-dinre'sionar Schrridi 'gerequatrontobesolvedanalyt ica l ly .  Forenergies ly ingintherange D" < E < D" *6[', an especiall,r, interesting class of sorutions exrsts. Triese so_cailed resonancesrares occur at energies that are dete' ' ined by the condition that the arrpritude oft hewave func t i onw i th in theba r r i e r ( i . e . , f o r ' 0 :  
R  <  R , , , , , , ) be la rge .Le tusno \ \ ,

turn our attention to this specific energ-v ,.gi,r ' ,.. i . i ,hich also ser\,,es to introcrucethe tunneling plrenomenon.
The piecervise sorutions to the Schrridinger equation appropriate to the reso_nance case are easiry written doil 'n in terms of sin and.o, or.*pon.ntiar functro's,using the following three definit ions:

k ' : \E;c-D\v , r . , -
r '  :  11 2nr"(D" + SI.  _ g117;.

(2 .78  )
The c.mbinations of sin(rtR) and cos(AR) that sorve the Schrcidin-eer equario.tn the inner region and that vanish at R : 0 (because the function ntust vanlshui th in the region whcre / '  is  i . f in i re and bccausc l r  n lusr  be eonr inuous.  i r  musrr' 'anish at R : 0) is

W : . . 1  s i n ( / , R )  ( f o r 0  <  R  S  R n , " * ) . (2 .79 t
Between R'r^ and Rnr"^ * 6. there are two sorutions that obey trre Schrodingerequation' so the most general sorution is a combination of these two:

W:  Bnexp ( r 'R )  *B  exp (_ r ,R )  ( f o rRn ,o .  <  R  <  Rn ,u ,+d ) .  ( 2 .g0 )
Finally. in the region beyond R,ro" * d, we can use a combination of either s in(k, R)and cos(fr 'R) or exp(i i 'R) and exp(-i t 'R) to express rhe sorurion. Unlike theregion near R : 0. where it u as most convenient to use trre sin and cos functronsbecause one of thern could be "thrown 

away" since it courd not meet the boundarycondi t ionofvanishingatR:0, in th is larye-Rregron,er therset isacceptable.we
choose to use the exp(i /, 'R) and exp(-i t"i,, set be.ause each ofthese functrons rsan eigenfunction of the momentum operator -ih,- /a R.This alrorvs us to discussamplitudes for electrons mo'ing with positive momentum and with negativemomentum. So. in this region, the most general solution is

V :  Cexp( l l 'R)+ Dexp(_i f ,R)  ( forR,o,  +6 < R < cc) .  (2.81)

^ 
There are four amplitudes (A, B+ ,8-, and C) that can be expressed in termsof the specified amplitude D of the incoming iu^ 1..g., pretend that we knowthe flux of electrons that our experimental ulpuru,r, ..shoots,, 

at the surface).Four equations that can be used io achieve this goar result when v and dv/d^are matched at Rmu^ and at R-u* * 6 (one of the essentiar properties of solutionsto the Schrcidinger equation is that they and their flrst derivative are continuous;these properties relare to V being a profabilitf un. _, rU 1U Obeing a momentum
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operator). These four equations are

.4 sin(tR.".) :  B-. exp(r 'Rn'u.) * B exp(-r 'R, ' , ,*),

I t  cos(l 'R"' , ' )  :  t<'  B* exp(r 'R..,)  -  rc '  B- exp(-r 'R.o*)

B-  exp( r ' (R ,n" -  +  t ) )  +  B-  exp( - r ' (R ,u*  *  6 ) )

:  Cexp( r t ' (Rn, , r  *  3 )  +  Dexp( - i  t ' (Rn,o*  *  3 ) ,

r 'B -  exp( r ' (R .u*  *  6 ) )  -  r 'B -  exp( - r ' (R ,n" ,  +  6 ) )

= ik 'C exp(ik'(Rn,"* * 3)l  -  ik D exp(-i  /r ' (R",",  * 6)).

(2 .82  )

(2.83 )

(2.84)

(2.85)

It is especially instructive to consider the value of A I D that results from solving

this set of four equations in four unknowns because the modulus of this ratio

provides infbrmation about the relative amount of amplitude that exists inside

the barrier in the attractive region of the potential compared to that existing in

the asymptotic region as incoming f lux.

The result of solving for .4 I D is

A I D : ; l r , , '  exp[-1,{ '(  R,,, , , ,  * 3 )]  {exp(r '  3 )( i  k '  -  r ' ) [r '  sin([ Rn,,, ,  )

+  I  cos( , (R, , , " . ) ) l  i  k '  +  exp( - l r ' l i ) ( i t '  +  r ' ) [ r '  s i r r ( l  R , , , , )
- I  cos(/r /?,, , , , ,  )) l  i  k '  |  

'  . (2 .86  )

Further. it is instructi l 'e to consider this result under conditions of a high (lar-ee

D. * d L' - E\ and thick (large d) barrier. In such a case. the "tunneling fau^tor"
exp(-r'd) lvi l l  be i, 'ery small compared to its counterpart exp(k'6). and so

i  k ' r '
'1  I  D :  1  - -L erp[ - i  ( '1R, , ' . , '  +  )  ) ]  cxp(  - r '6) [ r 's in(kR, ' " .  1

t A  -  r '

+ ,( cos{ { 'R,,, . , ,  ) l  ' t 1 . 8 7  r

The exp(-r'd) factor in A I D causes the magnitude of the rvave function inside
the barrier to be small in nrost circumstances; we say that incident f lur must
tunnel through the barrier to reach the inner region and that exp(-r'd) -eives the
probabi l i ty  of '  th is  tunnel inu.

Keep in rnind that. in the energv range we are considering (E < D" * d), a
classical particle could not even enter the region R,n". { R . R,..* f d; this is
why we call this the classically forbidden or tunneling region. A classical particle
starting in the large-R resion can not enter. let alone penetrate. this region, so
such a particle could never end up in tl ie 0 < R < R,.,,, inner region. Likewise. a
classical particle that begins in the inner region can never penetrate the tunneling
region and escape into the large-R region. Were it not for the fact that electrons
obey a Schrodinger equation rather than Newtonian dynamics. tunneling would
not occur and for example. scanning tunneling microscop;- (STM), l l 'hich has
proven to be a wonderful and pow'erful tool for imaging molecules on and near
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surfaces. wourd not exist. Likewise, many of the devices that appear in our mod_ern electronic tools and -qalxes, which depend on currents inducecr by tunneiingthrough various-iunctions, wourd not be availabre. But. rf .;;;;;.,rn* oo.,occur and it can have remarkable effects.

. 
trt. ur examine an especia,y important (in chemrstry,) phe'omenon that takesplace because of tunnering and that occurs when the energy E assumes very

:p:cial 
values. The magnirude of the A/D factor in the above sorutions ol.theSchrcidinger equation can beconte la.g. ifth. energy C is such that

the denominator factor in AID wil l vanish and A/D wil l become infinite. lt canbe shown that the above condition is similar to the energy quantization condition

rs srnal l .  In  fact .  i f

r srn(A'Rn,r,) * A cos(kR,,, .* )

tan( { 'R , r , r " )  :  -k l r '

t an ( lR ,n , * ) :  - k / r

and

k: \EpE/tt

, : rEu1o" -syy ;

In the case we are now considering, fr is the same. but

that arises when bound states of a finite potentiar we, are examined. There is,hou'ever. a difference. In the bound-state situation, rwo energy-reratecr paranretersoccur

C . 8 8  )

( 2 . 8 9 )

(2.e0)

(2 .er  )

(2.92)

( : . 93  )

R_'max

Electron coordinate R _

rather than r occurs, so the two tan(frR.u") equations are not identical, but theyare quite similar.
Another observation that is usefur to make about the sifuations in which A / Dbecomes very large can be made by considering the case ofa very high barrier (sothat r' is much larger than k).In this case, the lenominator that appears in A /D.

r' sin(tR."^) * I cos(lR.u*) : r, sin(rtR,u,),

can become small if

s in ( tR-u , , ; :9 .

This condition is nothing but the energy quantization condition that occurs forthe particle-in-a-box potential shown . nig. z.re. This potentiar is identical tothe potentiar that we were examining for 0 5 R < Rma*, but extends to infinitv

(2.e4)

(2.es)

One-
mensrona l  po ten t ia l

s im i la r  to  the  tunne l ino
pote.nt ial but without t-he
oarrrer and asymptotic
region.
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beyond R,n,,, ; the barrier and the dissociation asymptote displayed by our potential

are absent.
Let's consider '"vhat this tunneling problem has taught us. First, it showed

us rhat quantum particles penetrate into classically forbidden regions. It showed

that. at certain so-called resonance energies, tunneling is much more l ikely than at

ener-sries than are "off resonance". In our model problem, this means that electrons

impinging on the surface with resonance energies wiil have a very high probability

of tunneling to produce an electron that is trapped in the 0 < R < Rn,o" resion.

By the wav. we could have solved the four equations for the amplitude C

of the outgoing wave in the R ) R.o* region in terms of the I amplitude. We

might want to take this approach if wanted to model an experiment in which the

electron began in the 0 < R . R,,,". region and we wanted to compute the relative

amplitude fbr the electron to escape. However, if we were to solve for C lA and

then examine under what conditions the amplitude of this ratio w'ouid become

small (so the electron can not escape), we would find the same tan(ftRma,):
-k f rc' resonance condition as we fbund from the other point of view This means

that the resonance energies tell us fbr what collision energies the electron rvill

tunnel inward and produce a trapped electron and, at these same energies, an

electron that is trapped wil l not escape quickly.

Whenever one has a barrier on a potential energy surface. at energies above

the dissociation asymptotc D. but below the top of the barrier (D. + ,l y' here),

one can expect resonance states to occur at "special" scattering energies E. As

we il lustrated rvith the model problem, these so-called resonance energies can

often be approxirnated by the bound-state energies ofa potential that is identical
to the potential of interest in the inner region (0 < R < R',"*)but that exlends
to infinity beyond the top of the barrier (i.e., beyond the barrier. it does not fall
back to ra l t res belou E) .

The chemical significance of resonances is great. Highly rotationally excited
molecules rray ha'"'e more than enor.rgh total energy to dissociate (D"). but this
energy may be "stored" in the rotational motion. and the vibrational energy may be
less than D.. In terms of the above model. high angular momentum may produce

a significant centrifugal barrier in the effective potential that characterizes the
molecule's vibration, but the system's vibrational energy may lie significantly
below D.. In such a case. and when viewed in terms of motion on an angular-
momentum-modified efi 'ective potential such as I show in Fig. 2.20. the l ifetime
of the molecule with respect to dissociation is determined by the rate of tunneling
through the barrier.

In that case, one speaks of "rotational predissociation" of the molecule. The
Iifetime r can be estimated by computing the fiequency u at which flux that exists
inside Rrr* strikes the barrier at R,,,,,,,

t1K
y  =  _  ( s  , )

2tr R,",,,
(2.e6)
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R a d i a l
po ten t i a l  f o r
n o n - r o t a t i n g  ( J : 0 )
mo tecu le  and  f o r
ro ta t i ng  mo lecu le .

and then multiplying by
fronr R.", to R,rr^ * d:

The result is that

the probability p rhat

P = exp(-2r'3)

ffux tunnels through the barrier

(2 .e7 )

(2.e8 )
t l N

f  =  - - -  c \ n / - ) , , ' t r
) " P  

' " F t  ' ^  u l
- ts |  InlSr

u'ith the energy f entering into fr and r' being determined by the resonancecondi t ion:  ( r 's i ' ( t rR-o ' )  *  r  cos(rR-," ) )  :  min imum. ey loot ing back at  thedefintion of r', we note that the probability of tunnering falrs off exponentia'ywith a factor depending on the rvidth d of the barrier through which the particremust tunnel multiplied by r,, which depends on the height of the barrier D" * 3above the energy .E available. This exponential dependence on thickness andheight of the barriers is something you should keep in mind because it appearsin a l l  tunnel ing rate expressions.
Another important case in u,hich tunnering occurs is in erectronicaily mera_stable states of anions. In so-calred shap..einunce srares,,n.-r"t""i ' ,,.^o",,

electron experiences:

(i) an attractive potentiar due to its interaction with the underlying neutral morecure,sdipole. quadrupole. and induced electrostatic moments, as well as(ii) a centrifugar potential of.the form L(L + r)h2 /gn r,"R2 *hos. .agnitudedepends on the angurar character ofthe orbital the extra erectron occupies.
when co'rbined. the above attractive and centrifugar potentials produce an efrec_tive radial potentiar of the- form shown in Fig.2..2r fbr the 1y'f case in which theadded electron occupies the n* orbital whii has z - 2 character when vieu,ed

Mel rs tcb lc  ro tJ t rona l  le \  e l

rG) + h?[Ju +

l '(R) for non-rolating molecule



Electron tunnel ing

from the center of the N-N bond. Again. tunneling through the barrier in this
potential detennine.s the l if-etimes of such shape resonance states.

Although the examples treated above involved piecewise constant potentials
(so the Schrridinger equation and the boundary matching conditions could be
solved exactly), many of the characteristics observed carry over to more chenti-
cally realistic sitr.rations. In fact. one can often model chemical reaction processes
in terms of motion along a "reaction coordinate" (.r)from a region characreristic
of reactant materials r ' 'utere the potential surface is positively curved in all direc-
tion and all forces (i.e.. gradients ofthe potential along all internal coordrnates)
vanish. to a transition state at r.vhich the potential surface's cllrvature alon-q.r' is
negatir,e while all other curvaturcs are positir 'e and all forces vanish: onw'ard to
product materials rvhere again ail curvatures are positive and all forces vanish.
A prototypicul tracc of the encrgy variation along such a reaction coordinate
is sho'uvn in Fig.2.22. Near the transition sratc at the top of the barrier on this
surface. tunneling through the barrier plays an important role. if the masses of
the particles moving in this region are sufficiently l ight. Specifically. if H or D
atoms are involved in the bond breaking and formin_e in this region of the cncrgy
surface. tunneling must usually be considered in treating the dynamics.

Within the above "rcaction path" point of view.. motion transvcrse to the reac-
tion coordinate .i is clften niodeled in terms of local harmonic motion although
more sophisticated treatmcnts of the dynamics are possible. This picture leads
one to consider motion along a singlc degree of freedom (s), with respect to
tvhich nruch of the above treatment can be carried over. coupled to transverse
motion along all other internal degrees of freedom taking place under an enrirely
positively curved potential (which therefore produces restoring fclrces to mole-
ment aw'ay from the "streambed" traced out by the reaction path s ). This point of
view constitutes one of the most widely used ancl successful models of molecular
reactlon dynamics and is treated in more detail in Chapter 8 of this text.

Reactants

Energy
i l e  a l ong  a  r eac t i on

path  showing the  bar r ie r
t h r o u g h  w h i c h  t u n n e l i n g
may occur .

Effective
rad ia l  po ten t ia l  fo r  the
excess electron in N!
occupy ing  the  z*  o rb i ta l
wh ich  has  a  dominant
L  =  2  component ,
L (L  +  1 l l ]  /8n2  m#.

Region of
act i  Vatcd
corrplex
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2.7 Angular  momentum

2.7.1 Orbi ta l  angular  momentum
A particle nro'ing rvith momentum p at a positrcln r relative to sonre coordr-
nate origin has so-called orbital angular momentum equal to L : r x p. The
three conrponents of this angular momentum vector in a cartesian coordinate
system located at the origin rnentioned above are given in terms of the cartesian
coordinates of r and p as follo,,vs:

L - = t p , . - t J t , .

L ,  :  . t ' l t .  - : 1 t , .

L , . : : p ,  *  x l t , .

using the fundanrentar commutation rerations arlong the cartesian coordi-
nates and the Cartesian momenta:

[ q t .  p i l  :  4 t p r  -  p  i 4 t  =  i h 6 1  /  i . t  = , r .  r , . : ) . t l . l 0 l r
rt can be shown that the abo'e angular momentum operators obey the folro$,ing
sel  of  commrrtat ion re lat ions:

(1 .99  )
(2.  I  00)
( 2 .  l 0 l  1

[ 2 , .  Z , ]  -  i t t L . .

l L , . L . l :  i t l L , .

l L , . L , l :  i h L , .

(2 .  r03  )
(2. r0.1)
( 2 . 1 0 5 )

Although the cornponents of L do rot comnlute with one another. they can be
shoivn to commute with the operator Z2 defined by

L )  :  L :  +  L i  +  L : .  ( 2 . 1 0 6 )

This new operator is referred to as the square of the total angular momentum
operator.

The conmutation properties of the components of L allow us to conclude
that complete sets of functions can be founci that are eigenfunctions of Z2 and of
one, but not more than one, component of L. It is convention to select this one
component as 2., and to label the resulting simultaneous eigenstates of L2 and
L, as ll. n) according to the corresponding eigenvalues:

L 2 l t . n t ) : h l t ( t + l ) l l . n ) ,  / = 0 .  1 . 2 . 3 . . . . .  ( 2 . 1 0 7 )
L , l l . n )  : l a n l l , m ) ,  m  :  * t , * ( / -  t ) .  + ( t  _ 2 ) . . . . t ( t _ ( / _  I ) ) . 0

(2.  r  08)
These eigenfunctions of L2 and of z, will not, in general, be eigenfunctions of
either z' or of 2... This means that any measurement of z, or 2.,. wilr necessariry
change the uave function if it begins as an eigenfunction of 2,.

The above expressions for Z._, L,, and L, canbe mapped into quantum rne_
chanical operators by substituting x, v-, and z as the corresponding coordinate
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operators and -i/10 l0x . - ihd ldt,, and -ihd l0z for p., . p,,, and p_-. respectively.
The resulting operators can then be transformed into spherical coordinates the
results of which are

8 1

L ,

L .

L ,

L 2

=  - u t o / t t e .

:  i t t ls inQ i ) lAe + cor0 cosg d l i )Q| .
: -i f i{cos d A lAe - cot0 singd l0Ql.
:  - t 1 : { ( l /  s i n6 )  d /ad (s ind  d la0 )  +  ( l /  s i n :  0 )  d2  l , )O2 l

(2.  l  0e)
(2 .  l  l 0 )

( 2 . 1  I  t )
( 2 . r  l 2 )

2.7.2 Proper t ies of  genera l  angular  momenta

There are nlany types of angular momenta that one encounters in chemrsrry.
orbital angular momenta. snch as introduced above, arise in electronic motion in
atorrs. ln atom-atom and electron-atom coll isions, and in rotational motion in
molecules. Intrinsic spin angular momentum is present in electrons. Hl , H2, cl3.
and many other nuclei. In this section, we wil l deal with the behavior of anv and
all an_qular momenta and their corresponding eigenfunctions.

At t imes. an atom or molecule contains more than one type of angular mo-
mentum. The Hamiltonian's interaction potentials present in a particular specles
may or may not cause these individual angular momenta to be coupled to an
appreciable extent (i.e.. the Harniltonian may or may not contain terms that re-
t 'er simultancously to two or more of these angular momenta). For example. the
NH- ion. lvhich has a rf[ grounci electronic state (its electronic configurarion is
1si ,2ol3or2p; , :p l ,  )  has e lect ronic  spin.  e lect ronic  orb i ta l .  and molecular  rora-
tional angular momenta. The full Hamiltonian H contains terms that couple the
electronic spin and orbital angular momenta. thereby causing them individuallv
to not commute rvith H.

In such cases. the eigenstates of the system can be labeled rigorously only
by angular momenturn quanrum numbers j and n belonging to the total angular
momentum J. The total angular momentum of a collection of individual angular
momenta is defined. component-by-component. as follows:

I t l i ) . ( 2 . 1  I 3 )

where,t labels.y. -r,, and:, and l labels the constituents whose angular momenra
couple to produce J.

For the remainder of this section. we wil l study eigenfunction-eigenvalue
relationships that are characteristic of all angular momenta ancl which are con-
sequences of the commutation relations arxong the angular momentum vector's
three components. we wil l also study how one combines eigenfunctions of two
or more angular momenta {J(i )} to produce eigenfunctions of the total J.

l . - \ -" ' -  t -
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Consequences of the commutation relations
Any set ofthree operators that obey

[J,. J,] - ittJ,.

14. .I. l  : i ttJ,.

[J-. J,l : ir lJ,.

lJ2.  J- l  = o.

1.1.. Jxl - tTtJ+.

J . l 1 . m 7  :  n '  . f t i . m ) l j . n t ) .
J . l  j .  n t )  -  hnl j  .  n) .

( 2 . 1 t 1 )

( 2 . 1  l - 5 )

( 2 .  r  l 6 )

will be taken to define an angularmomentunt J. whose square L) : Ji + Ji + .l;
commutes with all three of its components. It is useful to also introduce two
combir.rations of the three fundamental operators:

J * : . 1 ,  t i J . ,  Q . l t 7 )

and to refer to them as raising and lowering operators for reasons that r,r,ill be
made clear below. These ne\\' operators can be shown to obel, the follorving
commutation relations:

( 2 . 1  l 8 )

( 2 . 1 l 9 )

Using only the above commutation properties, it is possible to prove irnportant
properties of the ei-cenfunctions and eigenvalues of J2 and J.. Let us assume that
lve have found a set ofsimultaneous eigenfunctions ofJ2 and J.: the fact that these
two operators col.nnrute tells us that this is possible. Let us label the eigenvalues
belonging to these functions;

(2.120)

( 2 . 1 2  I  )

in terms of the quantit ies rl and J'( j . m). Although we cer.tainly "hint" that these
quantities must be related to certain j and nt quantum numbers. we have not yet
proven this, although we will soon do so. For now. rve vieu' ./'(.1 . m) and rir simpll,
as symbols that represent the respective eigenvalues. Because both J2 and J, are
Hermitian, eigenfunctions belonging to different .f ( j. m) or r? quantum numbers
must be orthogonal:

( i  .n t  I  j .m ' )  =  3 , , , . , , , ,5  . (2.122)

we now prove several identities that are needed to discover the inforrnatron
about the eigenvalues and eigenfunctions of general angular moment3 that we
are after. Later in this section, the essential results are summarized.

(i) There is a maximum and a minimum eigenvalue for ,I,
Because all of the components of J are Hermitian, and because the scalar product
of any function with itself is positive semi-definite, the following identity holds:

( j . n t l J i  +  L l . t . i .m l :  \ J , ( . j ,m l J ,u .m)  +  ( J , \ j , n r l J , ) j . n )  >  0 .  ( 2 . t 23 )
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Ho*,ever. Ll + li is equal to J2 - -/-2, so this inequality implies that

( j .  mlJ)  -  l i l i .  m) = / r211'1 i .  n t1 -  m2l  > 0. (2.1211)

nhich. in turn, implies that nt2 must be less than or equal to -f(j. lz). Hence,

for any value of the total angular momentum eigenvalue /, the ;-projection

eigenvalue (rr) must have a maximum and a minimum value and both of these

must be less than or equal to the total angular momentum squared eigenr,aiue ,/'.

(ii) The raising and lowering operators change the "I. eigenvalue but not

the ,I2 eigenvalue when acting on 17. rl)

Applying the commutation relations obeyed by Ja to 17. z ) yields another useful
result:

83

J ,J " l j . n )  -  f i J , l j .m ) :  I l 11o1  1 . . 7 ,
J2JL l j .m)  -  J *J ) l i .  n t )  -  0 .

J .J - \ j .  n )  :  1p7 + l i )  J= l j .  n l  =  ldm +  l ) l j ,  n ) .

Jt Jt . l  .n) :  r11 .11i.  nJ J-) j .  m'1 .

(2.t2s)
(2.126)

Now, using the fact that 17. n) is an eigenstate of J2 and of -/,, these identit ies
give

(2. t27)

(2 .  r 28 )

These equations prove that the functions Jalj. m) must either themselves be
eigenfunct ionsof- / ranci - / . ,wi t l ie igenvaluesn2 11.1 .m)andh(m - t  l )orJ+l j .m)
must equal zero. In the former case. we see that I acting on I j, n) generates
a new eisenstate with the srme Jr eigenvalue as l j. m) but with one unit of f i
higher or lolver in -/, eigenvalue. It is for this reason that we call .,/* raising and
lorvering operators. Notice that, although Jalj. m) is indeed an eigenfunction of
. r .  wi th e igenr ,a lue (m t l ) l i .  J+ l  j .  i r r )  is  not  ident ica l  to  l j .m t  1) ;  i t  is  only
proportional to l/. r? + l):

J- l  i .  m) :  C7, , , l j .  n t  J :  1) . (1.  I  29)

Explicit expressions fbr these Cf,,, coefficients wil l be obtained below. Notice also
that because the -/- 17. rr ) , and hence 17. m X. 1) , have the same -I2 eigenvalue as
17. n) (in fact. sequential application of -Q can be used to show that all l j , m'),
for all nr'. have this same J2 eigenvalue). the -/2 eigenvalue f(j.n) must be
tndependent ofrr. For this reason, ./ can be labeled by one quantum number 7.

(iii) The ./2 eigenvalues are related to the maximum and minimum ,I-
eigenvalues which are related to one another
Earlier, we shor.ved that there exists a maximum and a minimum value for n. for
any glven total angular momentum. It is when one reaches these limiting cases
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that J-l.i . m) : 0 applies. In particular,

J * l . j  . n t ^ ^ ) : 0 .

J- l  j .  nt^ i , )  = Q.

Applying the following identities:

J J. - J2 - J: -hJ,.

J+J : J2 - J.2 +h.1,,

respectively. to 1.7, z-u*) and 17. nln ln) gives

f  ( . j .  m^^,) :  n l .u*(r i ro^ *  I  ) .

. l  (  j ,  m^ , " ) :  r l r n , ; n (n l n , ; n  -  l )

J 2 l i . m )  : t 1 2  j ( j  *  t ) 1 1 , m 1 .

We also see that

- f ( j , ,n ) :  j ( j  *  1 ) :  m^u* (m^u*  +  1) :  n . ;n ( r ln , ;n  -  l ) ,

from which it follows that

(2.  r  30)
( 2 .  r 3 1  )

(2.132)

(2 .  r  33 )

r /  l . f j . r r -a") -  r r lo*  -  nr*o, ]  :0 .

h1 l.f U. /??min) - zrfl,n + rr, ln ) = o.

which imrnediately gives the J2 eigenvalues f(7. n.r^) and .f (. j . ntni) in terms
of r?n,u* or mmin'.

(2.  I  36)

(2 .1  37 )

So, u'e now know the -I2 eigenvalues for l j ,m,no*) and 1.7. rr?min). However, we
earlier showed that 17. rr) and lj.m - 1) have the same _/l eigenvalue (u,hen we
treated the effect of I on l. l ,nr)) and that the J2 eigenvalue is independent of
m. If we therefore define the quantum number 7 to be tn mar, we see that the J:
eigenvalues are given b1

(2.134)

( 2 . 1  3 5  )

(2 . r38)

(2. 1 3e)

lz lmrn: - l / lmax. (2.  r  40)

(iv) The j quantum number can be integer or half-integer
The fact that the z-values run from j to - j in unit steps (because of the properry
ofthe -! operators) means that there clearly can be only integer or half-integer
values for 7. In the former case, the rfi quantum number runs over -j, -j +
l ,  - j  +  2,  .  .  . ,  -  j  +  ( j  -  1) ,  0 ,  1,  r ,  .  . . ,  j  t in the la t rer , , r? runs over  -7.  -7 *
l ,  - j  +  2 .  . . . ,  -  j  +  ( i  -  l l 2 ) , 112 ,312 , . . . , 7 .  On l y  i n tege r  and  ha l f - r n rege r
values can range from j to -j in steps of unity. Species with integer spin are
known as bosons and those with half-integer spin are called fermions.



Angu la r  momen tum

(v)  More on J+l j .m)

Using the above results for the effect of -[ acting on I j. m) and the fact that -/*

and J- are adjoints of one anothel allows us to write:

( j .  mlJ-J* l j .  n)  :  | i .  * l  (J '  -  J :  -  hJ, )  U,  ml
= t l2UU *  t )  -  m(m *  t ) ]
:  lJ+U, mlJ l l j ,  ry)  :  (Ci )2,

(2.t42)

(2.1,14)

A R

(2 .11  1  )

where Cl.u, is the proportionality constant between J+U , m) and the normalized
function I j , m + 1). Likewise, the effect of -I- can be expressed as

( j .m  Ja l_ l j ,m)  =  q i , ^ l ( J .  -  J :  +hJ , ) t j .m )
:  h2 l i  ( i  *  t )  -  m(n  -  1 ) |
:  (J_( j .  mlJ l j .  m) :  (C1.)1,

where C,..,, is the proportionality constant befween J_l j, m) and the normalized
l i . m  -  t ) .

Thus, we can solve for C1.,, after which the effect of -/a on I j . m) ts given by

J - l j . n t ) : t t l j ( j  * l ) - m ( m  +  l ) ) ' / ? l / .  m t 1 l .  ( 2 . 1 1 3 )

2 .7 .3  Summary

The above results apply to any angular momentum operators. The essential find-
ings can be summarized as follows:

(i) J) and J. ha'e complete sets of simultaneous eigenfunctions. we label these
eigenfunctions j. n): they are orthonormal in both their m- and i -type indices:
U , m  j ' .  n ' )  :  3 , , , . , , ,  5  . , .

( i i )  These 17, rr) eigenfunctions obey

J t l i . . )  : h t j t j  +  I ) l i . m ) .  /  :  i n t e g e r o r h a l f - i n t e g e r

J . l j . n t l : t t t n l j , m ) ,  , n  =  - j ,  i n s t e p s o f  I  t o * 7 .  ( 2 . 1 4 5 )

(iii) The raising and lowerin-e operators .-/+ act on lj. m) to yield functions rhat are
eigentunctions of ./: with the same eigenvalues as I j , m) and eigenfunctions of -/,
with eigenvalues of (rr * l) f t :

J . t  j . n 1  : l t l j t j  + l t - m t m  *  l ) l r r . i . m = l l . 1 )  l J 6  |

(tv) When Ja acts on the "extremal" states 17, j) or lj, -7), respectively, the result is
zero.

The results given above are, as stated, general. Any and all angular momenta
have quantum mechanical operators that obey these equations. it is convention to
designate specific kinds ofangular momenta by specific letters; however, it should
be kept in mind that no matter what letters are used. there are operators
corresponding to J2, J,, and I that obey relations as specified above, and there
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are eigenfunctions and eigenvalues that have all ofthe properties obrained above.
For electronic or col l is ional orbital angular momenta, i t  is common to use l . l  and
l.:  for electron spin, S: and S, are used; for nuclear spin 1: and I are most
corltlolt: and for molecular rotational angular montentum. N: and ,\; are ntost
common (although sontetimes J2 and .t, nrav be used1. Whencver two or more
angular momenta are combined or coupled to produce a "total" angular
monrentum. the latter is desicnated bi Jr and J .

2.7.4 Coupl ing of  angular  momenta

If the Hamiltonian under study contains terms that couple two or ntore angu-
lar momenta J(i ), then only the components of the total angular momentum
J : L J(i ) and J2 wil l commure with f1. It is therefore essenrial to label the
quantum states of the systen, by the eigenvalues of J- and J: and to coltstruct
variational trial or model wavefunctions that are eigenfunctions of these total
angular momentum operators. The problem of angular molrentum coupling has
to do with how to combine eigenfunctions of the uncoupled angular momen-
tum operators, which are given as simple products of the eigenfunctions of the
individual angular motnenta fl; l . i i ,  m 1). to form eigenfunctions of J2 and J..

Eigenfunctions of J,
Because the individual elements of J are formed additively, but J: is not. ir is
straightforward to form eigenstates of

1 . : l J J i t ;
i

simple products of the form fft I j i , nt i) are eigenfunctions of I

(2. t4 '7)

r .n t i  n t )  : l  r , ( t ) f ]  t . i i ,m i )  = ) * , * f l  t r , . , , , ) . (2 .148 )

and have J, eigenvalues equal to the sum ofthe individual ntpll eigenvalues.
Hence, to form an eigenfunction with specified J and M eigenvalues, one must
conrbine only those product states l l, l j i ,nti) whose n;fi sum is equal to the
specified M value.

Eigenfunctions of J2: the Ctebsch-Gordon series
The task is then reduced to forming eigenfunctions lJ. M),given particular values
for the {jr } quantum numbers. When coupling pairs of angular momenta ll.i , m)
and lj', rr')), the total angular momentum states can be written, according to
what we determined above. as

lJ, M) = lcl I , , , , ,  l i .  m)l j ' ,  nt ') , (2.149)
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where the coefficients Cl.j!,i ., are called vector coupling coefficients (because

angular momenfum coupling is viewed much like adding two vectors j and j'

to produce another vector J), and where the sum over m and m' is restricted to

rhos!- terms for which ffi * m' : L'l . lt is more common to express the vector

coupling or so-called Clebsch-Gordon (CG) coefficients as ( j . m; j '  . ni I J. II)

and to view them as elements of a "matrix" whose columns are labeled by the

coupled-state -/. M quantum numbers and whose rows are labeled by the quantum

numbers characterizing the uncoupled "product basis" 7, m; j '  ,m .It turns out

that this matrix can be shown to be unitary so that the CG coefficients obey

l { l . , r ,  j ' , n l  I  J .  t t 4 l . ( j . m ;  j ' . m '  I  J ' .  M ' ) : d L . L , | u . , v ,

\ - l  ;  - .  ; '  n '  I  r  , r . t \
/ J \ r \ , . , J  t \ j . m :  j ' , m '  I  J ,  i l l ) -  : 3 u . , , 6 , , . , , ,

This unitarity of the cG coefficient matrix allows the inverse of the relation
giving coupled functions in terms of the product functions:

M ) " ) J .  M )

m' ) l J .  I t ) . (2 .  r  s3)

and

(2.  I  s0)

( 2 . 1 5 1  )

(2.152)

to be r.vritten as

l i .  m l l j ' .  n i )  :  LU .  n t :  j ' .  m '  I  J

:  f  t t .  t4  t ,  i .m;  j '

This result expresses the product functions in terms of the coupled angular mo-
mentum functions.

Generation of the CG coefficients
The CG coefficients can be generated in a systematic manner; however they can
also be looked up in books where they have been tabulated (e.g., see Table 2.rl
of R. N. Zare..lngulur i l lomentunr. John Wiley, New York (1988)). Here, we
will demonstrate the technique by rvhich the CG coe{fcients can be obtained.
but we rvill do so lor rather limited cases and refer the reader to more extensir,e
tabulations.

The strategy we take is to generate the lJ, J) srate (i.e., the state with ma.xi-
mum M-value) and to then use -/_ to generate lJ. J - l), after which the state
l./ - l. -r - l) ( i.e., the state with one lower -/-value) is constructed by finding a
combination of the product states in terms of which lJ, J - l) is expressed (be-
c a u s e b o t h  l J , J  -  1 )  a n d  l - r  - l , J  -  l )  h a v e t h e s a m e  M - v a l u e  M : J  - l l
wh i ch  i s  o r thogona l  t o  l J . J  -  l )  ( because  l J  -  1 . . / -  l )  and l J , - / -  l )  a re
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eigenfunctions of the Hermitian operator Jr corresponding to different ergen-
values. they must be orthogonal). This same process is then used to generate

lJ .J  -2) lJ  -1.J  -2 |1 and (by or thogonal i ty  construct ion)  lJ  -2.J  -2) .

and so on.

(i) The states with maximum and minimum M-values
We begin with the state l-I../) having the highest M-r'alue. This state must be
formed by taking the highest lz and the highest rr ' values (i.e.. m : j and nt' :

7'). and is given by

(2 .1  54 )

Only this one product is needed because only the one term with rt - 
.7 tnd

m' : i 'contributes to the sum in the above CG series. The state

I r ,  - r )  :  t i ,  - . i | j ' .  -  j ' ) (2 .1  s5  )

with the minimum M-vaiue is also given as a single product state. Notice that these
states have M-values given as +U + / '): since this is the maximum M-value, it
must be that the J-value corresponding to this state is J : j t .i' .

(ii) States with one lower M-r,alue but the same "/-value
Applying J- to I.I . J), and expressing J- as the sum of lowering operators for
the two individual ansular momenta:

J _ : J _ ( t ) + J , ( 2 ) (2.  l  56)

gives

J - l J . h : 1 1 1 J ( J  + l ) - J ( J  -  I ) ) r i r l " r . " / -  l )
:  (J- ( l )  + r - (2)) l j ,  i ) l i ' j ' )
= huu + 1)  -  ju  -  l ) ) ' / , | j ,  j  -  1 | j "  j ' )  +n11'1.1 '  a  11

_  j , l j ,  _  t ) | , / rU .  j tU , .  j ,  _  r ) .  ( 2 .157 )

This result expresses lJ, J - l) as follows:

l J .  J  -1 )  :  [ { , r ( , i  +1 )  -  j ( j  -  l ) } ' / ' l J ,  j  -  t ) l i ' .  i ' )
+ I . i 'U '  +  t )  -  i ' ( i ' -  1) ] ' /2 | i ,  i )U ' ,  i '  -  1) l
l J ( J  +  t )  -  J ( J  -  l ) 1 - r r : .  ( 2 . i 58 )

that is, the I J, J - I ) state, which has M : -/ - l, is formed from the two product
states 17, j - l l l j '  ,7') and lj, j) l j '  , j '  - 1) that have this same M-value.

(iii) States with one lower "I-value
To find the state lJ -1,J -l) that has the same M-value as the one found
above but one lower ,/-value, we must construct another combination of the two
p roduc ts ta tesw i th  M :  J  -  I  ( i . e . , l j ,  j  -  l ) l j ' ,  j ' l  and l j .  j ) l j ' .  j ' -  1 ) ) t ha t
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is orthogonal to the combination representing f J, J _ t):after doing so, we must

;;;::,ff,:.r"lting 
function so it is properry io.ruri,.a.';;;;r;;r;, the desired

t J  _  t .  J  _  t )  :  t u u  +  1 )  _  j ( j  _  1 ) ) , / 2 1 j .  j ) u , ,  j ,  _  t )
-  t i ' ( j '  +  t )  -  j ' (  j ,  -  t ) ) t / 2U ,  j  _  1 )U , .  j , ) l
I J ( J  +  1 )  _  J ( J  _  t y_ t r z .  ( 2 .159 )

It is straightforward ro show that this function is indeed orthogonal to lJ, J _ t).

(iv) States with even one lower ,/_yalue
Har-ing expressed lJ, J _ l) and lJ _ 1. J

::: a'Jil;l;;' we are no* o"oo*J'1ryi:'ffi;[ fi."iJ;l;]
c o m b i nati o n s ", *. ; :::T:,','�;,1, _i l;, L :t rt _- rlifr: ir.";,r., ; ji ilU ,  j  - 2 ) U ' ,  j ' ) . I i , i ) t j , . . j , _ 2 ) , a n d t j .  

j  _ 1 ) U , .  j , _  l ) .  N o t i c e t h a r t h e r eare precisely as many product states whose 
"r, 

* ,r, values add up to the desiredM-varue as there are totar angular momentum states that must be constructed(there are three ofeach in this case).

.rJ:: 
steps needed ro find the stat; l- l - 2, J -2) are anarogous ro those taken

(r)  onef i rsrappl ies. , /_  to l - r_ l .  - r  _  l )  and to lJ ,  J_ l )  roobrain lJ  _ 1.  J  _ 2)and 1,./ . ./ _ 2) . respectively; os .ombinotion, ,
t i , i - � t l t i ' . i ' - , , .  

) r l i ' i - 2 ) t i ' ' i ' ) ' U ' i ) U " i ' - 2 ) .
(rr) One then consrructs tJ _ 2. J _ 2) as a l ineart i. i)t i' . i' - 2), aw) tj. j _ t)ti, ./, _ r) *"::,1?il:::illny.j,,;,-lli;J,,f b u n d f o r t J _ t . J  _ 2 )  a n d  t J . J _ 2 ) .

once l-r - 2, J - 2) is obtained. it is then possibre to move on to forml J , J - 3 ) , t J - I . J - 3 ) ,  r 1 d  l t _ z , j _ : , 1 b y  a p p l y i n g  - / _  t o  t h e  t h r e e

;:::yiTi I 
tnpreceding apptication ortn. p.o..r,lonJ,o then rbrm

:: :)li; .i, -,,| tj 
"i::n,,1";U',11;i,;ilJ## 

f, *:ll,;;l*jo b t a r n e d  f o r l J , J  - 3 ) . t J  _  I , J  _ 3 ) , a n d  
t t  _ Z . J  _ 3 ) .

Again notice that ther
h. r. r"u, rn ; ;;' ; ;. ;; ""ffi: TH'.'jt'nc 

o rrec t nu m b er o r p ro d u c t s ta te s ( ro ur
states and rhe rotal ""*",- momentum r,"r;, ;.'.o :q"u?in.*l#il,j::?:TJ,;
f i"'J::iTH:l#::::r :n sets d;;; ;' ( i t''' t i i," i c;, ;;: i,,., ",
1l1nitary;bec-,",,,""0T*Xiliiil?,i,?;I|J"'Jllff ::"."T,n:Tffi :i;sets containing the same number of functions.
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An example
Let us consider an example in r. l,hich the spin and orbital ansular momenta of the
Si atom in its 3P ground state can be coupled to produce various rp.7 states. In tl.r is
case, the specific values for j and j '  are .f - "!: I and .i '  : L: 1. We could-
o f cou rse . take .T  -  l :  I  and . l ' :  S :  l . bu t t he f i na l  u ,aye func t i onsob ta rned
would span the same space as those w.e are abouf to determine.

The state with highest M-value is the-rp(,/|1s : 1. M t : I ) state. u,hich can be
represented by the product of an ncv spin function (representing S : i . M s : 1 )
and a 3p1 3p6 spatial function (represenring L : l. M t : l), u,here the Iirst func-
tlon corresponds to the first open-shell orbital and the second function to the
second open-shell orbital. Thus. the maximurr M-value is M:2 and corrc-
sponds to a state r"'ith -/ : 2:

l J  : 2 .  1 4  :  l )  :  1 2 .  l \  :  d d 3 p . . 1 p , , . ( 2 .  l  6 0 )

Clearly. the state 12. -2) would be given as bt'J 3p_t3po.
The states 12, l) and 11. l) u' ith one lower l l{-value are obtained by applying

J-  :  S* I  L_ to i2 .2)  as fo l lows:

J  12 .2 )  :  f r { 2 (3 )  -  2 ( l  ) } r / : 12 .  l )
:  (S -  +  l __ )ac r3p13po .  (2 .161 )

To apply s* or l- to oa 3p13ps. one must realize that each of these operators
is. in turn, a sum oflowering operators for each ofthe two open-shell electrons:

S - :  S  ( l ) + S - ( 2 ) .

L _ - L _ ( t ) + L  ( 2 ) .

The result above can therefore be continued as

(S- *  Z-)aa3pr3po :  l i l l l2(312)-  | l2( -11:) l1 t2 pa3p,3ps

+ t f t  /2(312) -  |  /2( -1/2 i l t i2up3plps
* hll (2) - I (0)| r1:oo3pn3p6

+ hl l (2)  -  0(-  I  ) l  
r / raa3pr 3p- , .

(2. t62)

( 2 . r 6 3 )

So, the function 12. l) is given by (ao3p63ps violates the pauli principle. so it is
removed)

(2. t64)

(2 .  r  65)

(2.166)

12. 1) : [do3n'3Ru * uB3p13p() r {2}tt2ua3py3o_l /2.
which can be rewritten as

12. l) : l(f la + uB;lpr3po + l2]tt2os3p'3p_,) /2.

writing the result in this way makes it clear that 12, l) is a combination of the
p roduc t  s ta tes  l , s  : 1 ,  Ms :0 )  lZ  :  l ,  M t :  l )  ( t he  t e rms  con ta in ine  l s :  l .
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. t / 5  =  0 )  : 2 - t i 2 1 a B  +  F a ) )  a n d  l s  : 1 , l v l s :  l ) l Z  :  l . l u l t : 0 )  ( t h e  t e r m s
con ta in ing  lS :  1 .  f u l  5 :11  -  a . ' ) .

To formtheother funct ion wi th M: 1,  the i1 ,  l )s tate,wemust f indanother
c o r n b i n a t i o n  o f  l S :  1 .  M 5 : 0 )  l I  :  l ,  M 1 : 1 )  a n < l  l S :  l ,  M 5 : 1 7 1 7  :
l., l [L :0) that is orthogonal to 12. l) and is normalized. Since

1 2 .  r )  :  2 - ' ' t l l s  :  t .  i n s : 0 ) i r  :  t .  M 1 -  t ) +  l " t :  l . , r / . r :  l )
x  l I  =  l ,  M t : 0 ) ) ,  e . 1 6 7 )

we immediately see that the requisite function is

l l .  l )  : 2 - ' ' : [ l S  -  I ,  M r  =  0 ) l Z  :  t .  M L :  l ) -  l S  =  l , , V s :  t )
x  l I  =  l ,  i l l r : 97 )1 .

In the spin-orbital notation used above. this state is

l l ,  l )  = f { f l "  + "B1lp,3pu -  {2} , '2aa3p}p-1)  f  2 .

9 1

(2.  r  68)

(2 .  r  69)

Thus  fa r ,  we  have  fbund the  3p .7  s ta tes  w i t h  J  : 2 ,  M :2 : J :2 .  i l t :  l :  and
l - l  i . t - l

To f i nd the3P l  s ra tesw i th  J  :  2 ,  M  :0 : J  :  l .M  :  0 ;  and - I  :  0 .  M  :  0 .
we must once agarn apply the -/_ tool. In particular, u,e applv,/_ to 12. l) to
obta in 12.0)  and u,e apply - /_ to l l .  l )  to  obta in l l .0) ,  each of  which wi l l  be
exp ressed  i n  t e rms  o f  l .S :  l .  M5  :0 )  l l  :  l .  M1 ,  : 0 ) .  l . t  :  l .  M . ;  :  l ) l t  :
l .  i l [ 1 :  - l ) .  a n d  l S :  I .  M 5  -  _ � l ) l L :  l .  M 1 :  i ) .  T h e  1 0 . 0 )  s t a t e  i s  t h e n
constructed to be a combination of these same product states which is orthosonal
to 12.0)  and to l l .0) .  The resul ts  are as fo l lows:

) . J : 2 .  t r : 0 )  :  6  " . 1 2 1 l . 0 ) l t . 0 ) +  
I l . l ) l l .  _ l ) +  I i .  _ l ) l t .  r ) 1 .  ( 2 . r 7 0 )

l J  :  r . , v : 0 )  : 2 - , , , | 1 .  l ) l l .  _ l )  _  l l .  _ l ) l l .  l ) 1 .  Q . t 7 t )
l . J  : 0 . , V  : 0 )  :  3 , , [ l r . 0 ) l t . 0 ) _ l l .  l ) l l . _ l )  _ l t . _ t ) l l ,  1 ) 1 .  ( 2 . 1 7 2 )

where. in all cases. a shorthand notation has been used in which the
l-t. ,I'l.s) | L . llt L) products stated have been represented by their quantum numbers
with the spin function arrvays appearing first in the product. To finally express
all three of these nerv functions in terms of spin-orbital products it is necessary
to gi'e the l.l. rvy) lL . l,l t.) proclucts with M : 0 in terms of these products. For
the spin functions, we have

l S :  l .  M s  =  l )  =  a o .

l S :  I ,  M s  -  0 )  =  2 - t t 2 ( c t p  +  p a )

lS :  I ,  r l .1s  =  - l )  :  f f  .

For the orbital product function, we have

(2 .173 )

( 2 . 1 7  1 )

(2 . t 1s )

(2.176)I t  :  i .  M t  =  I ) : 3 p r 3 p , , .
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i Z  :  l .  A 4 r :  g y  =  2  1 , ' : ( 3 p t , 3 p o  
*  3 p ; 3 p  , 1 .

l L : 1 , M t = - l )  : 3 p o 3 p _ i .
(2 .177 )

(2 .178 \

Coupling angular momenta of equivalent electrons
If equivalent angular momenta are coupled (e.g." to couple the orbital angular
momenta of a p2 or d3 configuration), one must use the follorving .,box'. method
to determine which of the term symbols ' iolate the pauli principle. To carry out
this step. one forms all possible unique (determinental) product states witl i  non-
negative M 1 and M5 values and arranges then.r into groups according to rheir M 7,
and M5 r'alues. For example. the boxes appropriate to the p: orbital occupancy
are shown below:

M v 2

M, I

U
lp tc t tpoc t l  Ip rap . - ra l

l p p p t l l l  l p t a p o f l . l p n a p t f l  l p ' c l p _ t f l l . l p  r a p r f J l .  l p o c r p o f J l

There is no need to form the correspondin-q states r.l,ith negative M1, ornegative
Ms values because they are simply "mirror images" of those listed above. For
example ,  the  s ta te  w i th  M1:  - l  and  Ms:  - l  i s  lp_r f jpo fJ l .  wh ich  can be
obta ined f rom the  ML:  I .  Ms:  I  s ta te  lp lnpea l  by  rep lac ing  o  by  p  and
replacing pr by p_r.

Given the box entries, one can identify those term symbols that arise by appry-
ing the following procedure over and over until all entries have been accounted
for:

(i) one identifies the highest M5 value (this gives a varue of the total spin quantum
number that arises, s) in the box. For the above example. the answer is s : l.

(ii) For all product states of /?,.r M5 value, one identifies the highest M7_ value (this
gives a value of the total orbital angular momentum, Z, that can arise y'rr llrs .f).
Forthe above example, the highest M7 withinthe M5 = I states is M t : | (not
ML :2), hence I :  l .

(iii) Knowing an ,s, Z combination, one knows the first term symbol that arises from
this configuration. In the p2 example, this is ip.

(iv) Because the level with these z and s quantum numbers conrains (2L + 1x2s + l)
states with M1 and M5 quantum numbers running from _Z to Z and from _.! to
.1, respectively, one must remove from the originar box this number of product
states. To do so, one simply erases from the box one entry u,ith each such ML and
M5 value. Actually, since the box need only show those entries with non-necatrve
M7 and M5 values, only these entries need be explicitly deleted. In the 3p
example, this amounts to deleting nine product states with ML, Ms values of
I ,  l ;  1 , 0 ;  l ,  - l ; 0 ,  1 ; 0 , 0 ; 0 ,  - t ;  _ 1 .  1 ;  _ 1 ,  0 ;  _ 1 .  _ 1 .

(v) After deleting these entries, one returns to step 1 and carries out the process agaln.
Forthe p2 example, the box after dereting the first nine product states rooks as
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follo*'s (those that appear in italics should be vierved as already cancelled in

counting al l  ofthe lP states):

,llt 2

V J

,!1, I

0
lp raprp l  lp tap-p l

l p r a p r d l  l p s p o f J l . l p n a p ' d l  l p s p ; F l , l p - r o p r E l ,  l p o a p o d l

It should be emphasized that the process of deleting or crossing off entries in

various ML, lvls boxes involves only counting how many states there are; by

no means do we identify the particular L . S, M t. M5 wave functions when we
cross out any particular entry in a box. For example, when the lprcvpodl prod-

uct is deleted from the Mt: I. r!1s:0 box in accounting for the states in
the 3P level. we do not claim that lpgpofrl i tself is a member of the lP level; the

lpocvp r f I product state could just as well be eliminated when accounting for the
lP states.

Returning to the p2 example at hand. after the lP term symbol's states have
been accounted for, the highest M5 value is 0 (hence there is an ̂ S : 0 state), and
within this Me value, the highest II 1, value is 2 (hence there is an L :2 state).
This means there is  a rD level  r ,v i th  f ive states having Mt:2.1.0.  -1.  -2.

Deleting five appropriate entries fiom the above box (again denoting deletions
by italics) leaves the following box:

,llt 2

M, l

U
I  p l a p x u l  l p t a p  t u l

l p s p t l J l  l : r a p r t l J l . ' , p r u p r f l l  p t u p  r f 1 . \ p _ t a p t f l l . l p , r a p o f l

The only r:maining entry, which thus has the highest M5 and M1 values. has
t/s : 0 and M y : 0. Thus there is also a lS level in the p2 configuration.

Thus,  unl ike the non-equivalent  2pr3pi  case,  in  which lB 'P,  lD,  'D,3S,  and
lS levels arise. only the lP. lD. andls arise in the p2 situation. It is necessary
to carry out this "box method" whenever one is dealing with equivalent angular
momenta.

If one has mixed equivalent and non-equivalent angular momenta, one can
determine all possibte couplings of the equivalent angular momenta using this
method and then use the simpler vectorcoupling method to add the non-equivalent
angular momenta to each of these coupled angular momenta. For example. the
p:dl configuration can be handled by vector coupling (using the straightforwarcl
non-equivalent procedure) Z : 2 (the d orbital) and ,S : I l2 (the third electron's
spin) ro each of 3p,rD, and iS. The result is .F, .D, .p, 2R 2D, ,q ,G, 2F. 2D, 2p
2S. and 2D.
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2.8 Rotations of molecules

2 .8 .1  Ro ta t i ona l  mo t ion  fo r  r i g id  d ia tom ic  and  l i nea r
polyatomic molecules

This schrodinger equation relates to the rotation of diatomic and linear
polyatomic molecules. lt also arises when treating the angular motions
of electrons in any spherically symmetric potential.

A diatomic molecule rvith fixed bond length R rotating in tlre absencc of any
external potential is described by the following Schrodinger equation:

( r i , , r 1 ' ) - - f - ! - ) r : u r
\  rJH /  R- s in-  F i )Qt )

t  : , t ,
'  -  F , t ,

2 l L R :  
-  ' ' " '

where z- is the square of the total angular rnomentum operator t,? + tl + tl
expressed in polar coordinates above. The angles d and @ describe the orientatlon
of the diatornic molecule's axis relative to a laboratory-fixed coordinate sysrem.
and pr is the reduced mass of the diatomic molecule U : i l .t1ttt2f (mr * ri:). The
differential operators can be seen to be exactly the same as those that arose rn
the hydrogen-like atom case as discussed above. Therefore, the same spherical
harmonics that served as the angular parts ofthe wave function in the hvdrogen-
atom case now serve as the entire wave function for the so-called rigid rotor: v/ :
YL.u@. @). These are exactly the same functions as we plotted earlier when we
graphed the s (Z : 0), p (L : 1), and d (L : 2) orbitals. The energl,eigenvalues
corresponding to each such eigenfunction are given as

_  h 2 J t J + l l
t L :  

z t t n ,  
: B J \ J - l l

and are independent of M. Thus each energy level is labeled by J and is (2J + 1)-
foid degenerate (because M ranges from -J to -r). Again, this is just like we saw
when we looked at the hydrogen orbitals; the p orbitals are three-fold degenerate
and the d orbitals are five-fold degenerate. The so-called rotational consranr
B (defined as tl2 121t"R21 depends on the molecule's bond length and reduced
mass. Spacings between successive rotational levels (which are of spectroscopic
relevance because, as shown in chapter 5, angular momentum selection rules
often restrict the changes LJ ]n J that can occur upon photon absorption to 1,0,
and -l) are given by

LE :  311 + 1X-/ + 2) -  BJ(J * 1) :  2p11 * t , (2.182)

These energy spacings are ofrelevance to microwave spectroscopy which probes
the rotational energy levels of molecules. In fact, microwave spectroscopy offers

- h ' l  I  a
2/t L R: s"*/ rl ', ( 2 . 1  7 9 )

( 2 . 1 8 0 )

( 2 . 1 8 1 )
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the most direct way to determine molecular rotational constants and hence molec-

ular bond lengths.

The rigid rotor provides the most commonly employed approximation to the

rotational energies and wave functions of linear molecules. As presented above,

the model restricts the bond length to be fixed. vibrational motion of the molecule
gives rise to changes in R which are then reflected in changes in the rotational
energy levels. The coupling between rotational and vibrational motion gives rise
to rotational B constants that depend on vibrational state as well as dynamical
couplings. called centrifu-eal distortions, that cause the total ro-vibrational energy
of the molecule to depend on rotational and vibrational quantum numbers in a
non-separable manner.

Within this "rigid rotor" model, the absorption spectrum of a rigid diatomic
molecule should display a series ofpeaks. each ofwhich corresponds to a specific
J - J f I transition. The energies at which these peaks occur should grow
linearly with -r. An example of such a progression of rotational lines is shown
inFig.2.23. The energies at which the rotational transitions occur appear to fit
the AE:28(J * l) formula rather well. The intensities of transitions from
level -/ to level -/ + 1 \,ary strongly with J primarily because the population of
molecules in the absorbing level varies with -/. These populations pr are given.
when the system is at equilibrium at temperature r, in terms of the degeneracy
(2J + 1) of the -/th level and the energy of this level B J(J + l ) by the Boltzmann
formula:

95

p.r  :  e- teJ *  t )  exp(-8, / ( ,1  + 1) lkT)

where p is the rotational partition function:

O = l tzL  *  l )  exp( -B- r (J  +  t ) l kT)

For low values of -/, the degeneracy is low and the exp(-B-r(J +l)l kr)
factor is near unity. As -/ increases, the degeracy grows linearly but the

(2.  r  83)

(2 .18 .1)

Typical
rotat ional absorption
profi le showing
intensity vs. J value of
the absorbing level.
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exp( - B J ( J + 1 ) I k T ) factor decreases more rapidly. As a result, there is a value
of  J ,  g iven by tak ing the der ivat ive of  (2J - l1)exp(-BJ(J + 1) lkT)  u ' i th  re-
spect to J and setting it equal to zero.

2J-u^ *  l :1 ,5f f i .  (2 .1g5)

at which the intensity ofthe rotational transition is expected to reach its maxrmurn.
This behavior is clearly displayed in the above figure.

The eigenfunctions belonging to these energy levels are the spherical harmon-
ics Yt.v@, @) which are normalized according to

u , @ . 0 ) s i n 0 d e d Q T : 3 t t , 6 r . u ' .  ( 2 . 1 8 6 )

As noted above, these functions are identical to those that appear in the solu-
tion of the angular part of hydrogen-like atoms. The above energl' levels and
eigenfunctions also apply to the rotation of rigid l inear polyatomic molecules;
the only difference is that the moment of inertia / entering into the rotatior.ral
energy expression is given by

(2 .  r  87)

where nr,, is the n.rass of the ath atom and Ro is its distance from the center of mass
of the molecule. This moment of inertia replaces pR2 in the earlier rotational
energy level expressions.

2.8.2 Rotat ional  mot ions of  r ig id  non- l inear  molecules

The rotational kinetic energy
The rotational kinetic energy operator for a rigid polyatomic molecule is

H,o, : Jj /2t" + J: l2tb + J: /2t,., (2.188)

where the lp(k: a,b.c) are the three principal moments of inertia of the
molecule (the eigenvalues of the moment of inertia tensor). This tensor has el-
ements in a Cartesian coordinate system (K,K' : X,Y. Z), whose origin is
located at the center of mass of the molecule, that can be computed as

/ r . " :  I  m, (n ' � ,  -  n ' � r . )  ( fo rK:  K ' )

I r . r ,  :  -LmiR*tRr, . i  gor  K I  K ' ) .  (2.190)

As discussed in more detail in Chapter 6, the components of the quanturn me-
chanical angular momentum operators along the three principal axes are

I : l m , R ;

(2 .1  8e)

J" - -ttcos x(*,rr\ - 
##) - i isinx $ ( 2 . r 9 r )
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(2.1e21

(2.  r  93)

(2.re7)

(2. r  98)
(2.t99)
(2.200)
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Jt = it tsinx (."tea - 
# i l .  ihco'xfi

,  - a
J c :  - l l l : -

d x

The angles 0 . Q, and x are the Euler angles needed to specify the orientation of
the rigid molecule relative to a laboratory-fixed coordinate system. The corre-
sponding square of the total angular momentum operator J2 can be obtained as

J 2 : J j + t ] + L j
a 2  ^ a  1  / a 2  a 2  6 :  \:  - ' d0 : ,  -  co t? -  *  

, i , r ,  \ r o ,  
*  

ax :  
-  2cos0  =  

) .  
t 2 ' 1941

and the component along the lab-fixed Z-axis J7 is -ili\lD6 as we saw much
earlier in this text.

The eigenfunctions and eigenvalues for specialcases
(i) Spherical tops

when the three principal moment of inertia values are identical. the molecule is
termed a spherical top. In this case, the total rotational energy can be expressed
in terms of the total angular momentum operator J2

H,, ,  = J)  l2 [ . (2.19s)

As a restrlt. the eigenfunctions of Hro, are those of J2 and Ju as well as J7,
both of which commute with J2 and, with one another. ,,/7 is the component
of J along the lab-fixed Z-axis and commutes with Jo because Jz: -ihAlAQ
and J,, - -iliD/Dx act on different angles. The energies associated with such
eigenfunctions are

E ( J .  K .  M ) : h 2 J ( J  +  I ) / 2 t 2 (2 . t 96 \

for all K (i.e., Jn quantum numbers) ranging from --l to -/ in unit steps and for
all l,I (i.e., Jz quantum numbers) ranging from -J to -/. Each energy level is
therefore (2.1 + l)2 degenerate because there are 2J + I possible K values and
2J + | possible M values for each J.

The eigenfunctions j-l. M. K) of J2, J7 and Jo , are given in terms of the set
of so-called rotation matrices Dt.tr.x..

D I - L l
, J .  1 4 .  K \ :  

v  i l  
D )  v  K @ . Q .  x t .

J l )J .  ] , t ,  K l  :  h2 L(L + l ) lJ ,  M,  K) ,
J , , IJ ,  M.  K)  :  hKlJ,  M.  K) ,

Jz lJ .  M.  K)  :  t1MlJ,  M,  Kt .

which obey
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These D.7..v.1' fu'ctions are proportional to the spherical har'ronics Y t.tr().0)
multiplied by exp(iKX)" lr 'hich reffects its X-dependence.

(i i) S1'mmetric tops
Molecules for which two of the three principal moments of incrtia are equal are
called symrnetric tops. Those for which the unique moment of jnertia is smaller
than the other two are termed prolate symmetric tops: if the unique moment of
inertia is larger than the others, the molecule is an oblate svrnmetric top. An
An.rerican football is prolate, and a frisbee is oblate.

Again. t lre rotational kinetic energy. which is the full rotational Hamilronran"
can be u'ritten in terms of the total rotational an_tular momentunr operator Jl and
the component of angular momentum along the axis with the unique principal
n'roment of inertia:

H,o, :  . / :  l2 l  + J : l l l2 l "  -  l l2 l l  forpro late rops.
Hu, : J2 l2l + J,2l l2l, - | l2t I for oblate tops.

Here, the moment of inertia ,1 denotes that moment that is conrmon to trvo direc-
tions; that is, / is the non-unique moment of inertia. As a result. the eigenfunctions
of H,o, are those of J: and Ju or J, (and of J7), and the corresponding energl,
levels are

(2 .201  )
(2.2021

(2.2031E(J ,  K .  M)  =  h2  J (J  +  j ) 12 t1  +  f f  121 t  p r , ,  _  t  l 2 t )

for prolate tops,

E (J .  K .  M \ : t r 2J (J  +  t ) / 2 r2  + t t 2K2 l t / 2 t ,  -  l l 2 r ) (2.20-+)

for oblate tops. again for K and M (i.e., Jo or J, and J7 quantum numbers,
respectively) rangin-q from -J to J in unit steps. Since the energy now depends
on K, these levels are only 2J * 1 degenerate due to the 2J * 1 different M
values that arise for each J value. Notice that for prolate tops, because 1., is
smaller than I, the energies increase with increasing K for given -/. In contrast.
for obiate tops, since ,I.. is larger than 1, the energies decrease with K for given
J. The eigenfunctions lJ. M , K) are the same rotation matrix functions as arise
for the spherical-top case, so they do not require any further discussion at this
time.

(iii) Asymmetric tops
The rotational eigenfunctions and energy levels of a molecule for which all three
principal moments of inertia are distinct (a so-called asyrnmetric top) can not
easily be expressed in terms of the angular momentum eigenstates and the J,
M, and K quanfum numbers. In fact, no one has ever solved the corresponding
Schrodinger equation for this case. However, given the three principal moments
ofinertia Io, I6,and I",amatrixrepresentation ofeach ofthe three contributions
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(2.205 )

(2.206)

(2.207)

q q

to the rotational Hamiltonian
1 2  r 2  1 2

u  -  
r . ;  J '  

'  J :
- 

2t, 2tr, 2t.

can be formed within a basis set of the { lJ. M . K)l rotation-matrix functions dis-
cussed earlier. This matrix wil l not be diagonal because the lJ. M . K) functions
are not eigenfunctions of the asymmetric top H.o1. However, the matrix can be
formed in this basis and subsequently brought to diagonal form by finding its
eigenvectors {Cn..r.v.x} and its eigenvalues {f,,}. The vectorcoefficients express
the asymmetric top eigenstates as

v '@ 'o '  ' '  = /a  Cn  ' t '  K l J '  M '  K ) '

Because the total angular momentum /2 still commutes with H,o,. each such
eigenstate rvill contain only one -/-value. and hence v,, can also be labeled by a
./ quantum number:

\U,  . t@. Q,  X)  :  I  C, ,  r  \ r  K)J.  M.  K) .

To form the only non-zero matrix elements of H,o, within the lJ. M, K) basis.
one can use the fbllowing properties of the rotation-matrix functions (see. tbr
example. R. N. Zare. Angular Momennun, John Wiley. New york (198g)):

(J ,  M.  KiJ , i l . t .  i l t .  K)  :  \J .  M.  KIJ; .J .  M,  K)
:  t l2 \J . , r . t .  KVl  *  J : iJ .  Lr .  K)
: h : [ J ( , ] + l ) - K : 1 . (  2.208 )

(2.209)

( J . , V . K l J , i  J . t t . K  + 2 )  =  - . ( J . , V . K l J ; l J . M . K  + 2 1
=  h ' 1 . / ( J  +  l ) -  K ( K  +  l ) l r  : u ( - /  +  l )

-  ( (  +  l x K  +  2 ) l r ' : ,  ( 2 . 2 1 0 )

( 2 . 2 r l )

Each of the elements of .1 . J,i.and Jol must, of course, be murtipried respectivelv.
by 1121,. | 121,,. and I 12l6 and summed together to form the matrix represenra-
tton of 11,u,. The diagonalization of this matrix then provides the asymmetric top
energles and rvave functions.

2.9 Vibrations of molecules

This Schrodinger  equat ion forms the basis  for  our  th ink ing about  bond
stretching and angle bending vibrations as well as collective vibratioi-rs
called phonons in solids.
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The radial motion of a diatomic molecule in its lorvest (J : 0) rotational level
can be described by the following Schrcidinger equation:

t l . l l l r

l r 'here p is  the reduced mass F:  m1m2f (nt1+m2) of  the two atoms.  I f  the
molecule is rotating. then the above Schrodinger equation has an additional term
J(J +1)h2/2LLr 2 l r  oni ts lef t -handside.Thus,eachrorat ionalstate( labeledby
the rotational quantum number J) has its own vibrational Schrodinger equation
and thus its own set of vibrational energy levels and u'ave functions. It is com-
mon to examine the J : 0 vibrational problem and then to use the vibrational
levels of this state as approximations to the vibrational levels of srates with non-
zero J values (treating the vibration-rotation coupling via perturbation theorv
introduced in Section 4.1). Let us thus focus on the J : 0 situation.

By substituting lr : F(r)lr into this equation, one obtains an equation for
F(r) in which the differential operators appear to be less complicated:

li1 d2 F- i  
a , - ,  

*  I / ( r \F :  EF ( 1 . 2 1 3 )

This equation is exactly the same as the equation seen earlier in this text for the
radial motion of the electron in the hydrogen-like atoms excepr that the reduced
mass /.. replaces the electron mass /ri and the potential I/(r) is not the coulomb
potential.

Ifthe vibrational potential is approximated as a quadratic function ofthe bond
displacement x : t' - r. expanded about the equilibrium bond length r. where
Z has its minimum.

V = 1 / 2 k ( r - r , ) 2 (2.214)

the resulting harmonic-oscillator equation can be solved exactly. Because the
potential Iu grows without bound as x approaches oc or -oo, only bound-state
solutions exist for this model probiem. That is, the motion is confined by the
nature of the potential, so no continuum states exist in which the two aroms
bound together by the potential are dissociated into two separare atoms.

In solving the radial differential equation for this potenrial, the large-r behavior
is first examined. For large r, the equation reads

#:)r . ' (#) , (2.2ts)

where x : r - re is the bond displacement away from equilibrium. Defining
q:gtklh2)t/4x as a new scaled radial coordinate allows the solution of the
large-r equation to be written as

fiu.g.": exp(-(2 l2). (2.2t6)
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The ge'eral solution to the radial equation is then expressed as this large-r
solution multiplied by a power series in the ( variable:

F  :  e v n / - . t l  / ? t  \ -  e r l -- : - r r ! \ / L , / _ \ r n (2.217)
n = v

where the c, are coefficients to be determined. Substituting this expression into
the full radial equation generates a set of recursion equations for the c,, ampli_
tudes. As in the solution ofthe hydrogen-like radial equation, the series described
by these coefficients is divergent unless the energy E happens to equar specific
values. It is this requirement that the wave function not diverge so it can be nor_
malized that vields energy quantization. The energies of the states that anse are
gir en by

E,, :  h(.k /  p)t '2 (n + |  /b. (2 .2  r  8 )

1 0 1

and the ei-eenfunctions are given in terms of the so-called Hermite polvnomiars
H,,(v) as lbllows:

I r , (x )  :  qn !2" )  t t21a/ r  y r ra  exp l -a - r : /2 )H, ,  (u t i )x )  , (2 .2 re)
where a : (ktrt l/1-1ti2. within this harmonic approximation to the potential. the
vibrational energy levels arc'evenly spaced:

AE :  E ,+r  -  E ,  :  t t , k l  p ) t '2 (2.220\

In experimental data such evenlv spaced ener,sy Ievel patterns are seldom seen:
most commonll,. one finds spacingS Er*l _ 8,, that decrease as the quantum
number n increases. In such cases. one says that the progression of vibrational
levels  d isp i r l  s  unharmonic i rv .

Because the Hermite functions H,, are odd oreven functions of.r (depending on
whether n is odd or even). the rvave functions ry',, (-r ) are odd or even. This splittin_q
of the solutions into tr '",o distinct classes is an example of the effect of symmetry;
tn this case. the symmetry is caused by the symmetry of the harmonic potential
rvith respecr to reflection through the origin along the -r-axis (i.e.. chansrn,s .r-
to --r). Throughout this text. many symmetries arise: in each case. symmerry
properties ofthe potential cause the solutions ofthe Schrtidinger equation to be
decomposed into various symmetry groupings. Such symmetry decompositions
are ofgreat use because they pror,ide additional quantum numbers (i.e.. symmerry
labels) by which the wave tunctions and energies can be labeled.

The basic idea u'derlying how such symmetries sprit the solutions of the
Schrcidinger equation into diftbrent classes relates to the fact that a symmerrv
operator (e.g.. the reflection plane in the above example) commutes with the
Hamiltonian. That is. the symmetry operator S obeys

SHq/ : HS:\y. (2.22r)
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Morse
potential energy as a
function of bond length.
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So -l leaves H uncl.ranged as it acts on ff (this ailows us to pass s through ff in
the abo'e equation). Any operatorthat reaves the Hamirtonian (i.e.. the energv)
unchanged is called a syrnnetrv operator.

If you ha'e never learned about horv point group symmetry can be used to
help simplify the solution of the Schrcidi.ger equation. this wouid be a good time
to lnterrupt your reading and go to chapter 4 and rea<i the rnaterial there,

The harmonic oscil lator energies and 'u'ave functions conrprise the simprest
reasonable model for ' ibrational nlotion. vibrations of a polyatomic molecule
are often characterized in terms of inclir idual bo'd-stretchi'g and a'gle_bending
motions. each of which is. in rurn. approximated ha'.ronicalry. This resurts in a
total vibrational wave function tl.rat is written as a product of funcrions" one fbr
each of the vibrational coordinates.

T\l 'o of the most severe l imitations of the harrnonic oscil lator nrodel, the lack
of anharmonicity (i.e., non-uniforn.r ener-qv revel spacings) and lack of. bond
dissociation. result from the quadratic nature of its potenrial. By introducing
model potentials that allow for proper bond dissociation (i.e.. that cio ,ot increase
without bound as,t --r co). the nrajor shortconrings of the harm'nic oscil lator
picture can be overcome. The so-called Morse potentiar (see Fis.2.24)

I / ( r )  -  D" l l  -  exp [ -a ( r  - . " ) ] ] : (2.222\

is often used in this regard.
In the Morse potential function. D" is the bond dissociation energy, r. is the

equilibrium bond length, and a is a constant that characterizes the ,.steepness,,
of the potential and thus affects the vibrational frequencies. The advantage of.
using the Morse potential to improve upon harmonic_oscillator_level predictions

2
Internuclear distance

-6
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is that its energy ler''els and wave functions are also knorvn exactly. The energres

are given in terms of the parameters of the potential as follows:

(, + 1)' o(X)' ' '
. (2.223)

4,n

where the force constant is given by k :2D, a2. The Morse potential supporrs
both bound states (those lying below the dissociation threshold for which vibration
is confined by an outer turning point) and continuum states lying above the
dissociation threshold. Its degree ofanharmonicity is governed by the ratio ofthe
harmonic energy /1(kl p;tlz to the dissociation energy D..

The eigenfunctions of the harmonic and Morse potentials display nodal char-
acter analogous to what we have seen earlier in the particle-in-a-box model prob-
lems. Namely, as the energy of the vibrational state increases, the number of
nodes in the vibrational wave function also increases. The state having vibra-
tional quantum number v has v nodes. I hope that by now the student is getting
used to seeing the number of nodes increase as the quanfum number and hence
the energy grows.

1 0 3

u,=,(x),[ft.;)


