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Many Electron Theory:

Time dependent perturbations and propagation.
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Hamiltonians with time dependence.

Evolution in time is governed by the hamiltonian of the system and when

there is an explicit dependence upon time in the hamiltonian it is no longer

possible to separate state vectors into a product of a time dependent phase

factor and a stationary eigenstate of a time independent hamiltonian.

Spectroscopy is built on the premise that absorption and emission occurs

between such states and that a low order perturbation treatment suffices for

the description of such processes. Molecular scattering processes and

reaction dynamics is not well suited for such a treatment and requires more

detailed analysis and somewhat different approximation methods.

Variational formulations are useful both for spectroscopic and dynamical

problems. The Schrödinger equation obtains from the condition, attributed

to Frenkel,
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and is a first order differential equation in time. It needs a starting value for

the state and is used to propagate this state towards later times, or,

occasionally, to previous ones. This is different from the time independent

variational form which leads to a second order partial differential equation

and certain boundary conditions.

Many electron theory in the perturbation form for a time independent

hamiltonian was developed from an adiabatic hypothesis that the electron

interaction could be considered time dependent and vanishing infinitely

long ago. Convergence of this procedure has been questioned.
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Dirac considered the time evolution of the density matrix in the Hartree-

Fock approximation, that is the state vector should at any time be of the

Slater determinant form with time dependent spin orbitals. Then one

calculates the value of the lagrangian
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The last term in the lagrangian comes out as in the normal Hartree-Fock

calculation with consideration that the density matrix now depends on

time. It holds that
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This expression simplifies when the canonical spin orbitals are used and

becomes

L t t t( ) = − ( ) − ( ) + ( ′ ′) − ′( ′ )[ ]∑ ∑ ∑ ′h ll l l ll l lll ll ll
˙ | |λ ε 1
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which has the value zero when the sum of the λ´s is a linear function of

time with the slope being the negative of the Hartree-Fock energy

expectation value.

A small deformation of the Hartree-Fock state should not change the value

of the lagrangian when a stationary solution is found. We use
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The previous result for the variation of the Hartree-Fock energy

expectation value gives
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and the condition for arbitrary variations is

hρ̇ ρ ρsr sp pr sp prpt i f t t t f t( ) + ( ) ( ) − ( ) ( )[ ] =∑ 0

A matrix form of this equation is

i t t th ˙ ,ρ ρ( ) = ( ) ( )[ ]f

which shows that the density matrix transforms inversely to the equation of

motion for a Heisenberg operator.

A proper Hartree-Fock density matrix is a projection operator onto the

occupied set of spin orbitals and the first term of the variation of the

lagrangian vanishes when the time derivative of the deformation generator

has no components in this space.

The time dependent Hartree-Fock equations have found use in collision

problems, molecular as well as nuclear. Our emphasis will be on the
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spectroscopy of electronic systems. We consider the effect of an external

field with some dependence on time,

h t h v trs rs rs( ) = + ( )

and a density matrix with a small deviation from a stationary state,

ρ δ δρsr sr s srt n t( ) = + ( )

The basis is taken as the canonical one for the stationary state. The

elements of the Fock matrix are then
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These forms are inserted into the equation of motion for the density matrix

and terms of second and higher order in the perturbations are discarded to

obtain the linearized time-dependent Hartree-Fock equations:
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Were we to neglect the terms that depend explicitly on the electron

interactions, then a direct integration gives
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Resonance occurs when the perturbation has a frequency component that

equals the spin orbital energy difference.

Fourier analysis transforms the differential equations above to algebraic

ones. We introduce the notation l to indicate occupied spin orbitals and k

to refer to unoccupied ones. Thus
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The matrix elements that occur in these equations are the same as those

considered in the stability analysis of the Hartree-Fock state. It is

convenient to order the elements of the perturbed density matrix as a one-

dimensional array. We introduce to this end an index σ to indicate a pair

(kl) and use −σ for the pair (lk). Then it holds that
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which is a linear equation system for the perturbed density matrix

elements. A perturbation, which is constant in time, gives a deformation of

the Hartree-Fock state from these coupled equations provided the state is

stable.

Singularities are to be anticipated in the equation system above for certain

frequencies ω. Such frequencies are interpreted as excitation frequencies of

the system. We saw above that neglect of electron interactions, beyond

what is included in the Fock matrix, gives the Bohr frequency rules.

A positive definite matrix A has a Cholesky decomposition such that

A LL= =± ± ′ ± ± ′
∗∑†

, , ,; A L Lσ σ σ τ σ ττ
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and we define new quantities as

δρ δρ δρτ σ τ σ σ τ σσ= +( )∗
−
∗

−∑ L L, ,

The inverse relation is denoted

δρ δρσ τ σ ττ± ±
−∗= ∑ L , .

A somewhat shortened notation is used for the complex conjugates of the

elements of the inverse to the matrix L.

The transformed elements of the density matrix satisfy the equation system
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It follows from the construction that Θ is an hermitean matrix and it can be

shown that its eigenvalues are occurring in pairs of opposite sign. Real spin

orbitals and matrix elements provide for some simplifications in the actual

calculation of these matrices.

The solution of the equation system offers the possibility to calculate the

perturbed expectation value of an operator. Such an operator may be the

dipole operator with the form

D d a ars r srs= ∑ †

so that

D d d d drs srrs k k= = + +( )∑ ∑ ∑ −ρ δρ δρσ σσlll l l

There should also be integration over the frequencies from the Fourier

transformation. A perturbation with a simple harmonic time dependence

gives an induced dipole moment with the same frequency and the

proportionality between the induce dipole and the field strength is
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expressed in terms of a polarizability that can be calculated from the

equation system.

Almost every electronic structure calculation involves a spin independent

hamiltonian and the Hartree-Fock orbitals are normally spin degenerate

and may be characterized as either α− or β−orbitals. A singlet ground state

admits single excitations only to another singlet or to a three-fold

degenerate triplet level. Accordingly one can separate the density matrix

distortion elements into singlet and triplet components. The matrix problem

separates into four independent ones, three of which are identical and refer

to triplet excitations. Point group symmetry simplifies the solution further

when present. The perturbation from an electric field can be expressed

either in the dipole length form or in the dipole velocity form. Time

dependent linearized Hartree-Fock maintains the equivalence between the

two formulations provided that dipole velocity operator representation

satisfies the fundamental relation

˙ ,D D Hi= [ ]h

This holds in a complete basis and may be reasonably accurate in a large

basis for the relevant matrix elements. Some model hamiltonians are

constructed so as to offer this relation.


