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Chapter 7. Statistical Mechanics 
 

 When one is faced with a system containing many molecules at or near thermal 

equilibrium, it is not necessary or even wise to try to describe it in terms of quantum 

wave functions or even classical trajectories following the positions and momenta of all 

of the constituent particles. Instead, the powerful tools of statistical mechanics allow one 

to focus on quantities that describe the many-molecule system in terms of the behavior it 

displays most of the time. In this Chapter, you will learn about these tools and see some 

important examples of their application.  

 

 

 

7.1. Collections of Molecules at or Near Equilibrium 

As introduced in Chapter 5, the approach one takes in studying a system 

composed of a very large number of molecules at or near thermal equilibrium can be 

quite different from how one studies systems containing a few isolated molecules. In 

principle, it is possible to conceive of computing the quantum energy levels and wave 

functions of a collection of many molecules (e.g., ten Na+ ions, ten Cl- ions and 550 H2O 

molecules in a volume chosen to simulate a concentration of 1 molar NaCl (aq)), but 

doing so becomes impractical once the number of atoms in the system reaches a few 

thousand or if the molecules have significant intermolecular interactions as they do in 

condensed-phase systems. Also, as noted in Chapter 5, following the time evolution of 

such a large number of molecules can be confusing if one focuses on the short-time 

behavior of any single molecule (e.g., one sees jerky changes in its energy, momentum, 

and angular momentum). By examining, instead, the long-time average behavior of each 

molecule or, alternatively, the average properties of a significantly large number of 

molecules, one is often better able to understand, interpret, and simulate such condensed-

media systems. Moreover, most experiments do not probe such short-time dynamical 

properties of single molecules; instead, their signals report on the behavior of many 

molecules lying within the range of their detection device (e.g., laser beam, STM tip, or 
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electrode). It is when one want to describe the behavior of collections of molecules under 

such conditions that the power of statistical mechanics comes into play. 

 

7.1.1 The Distribution of Energy Among Levels 

One of the most important concepts of statistical mechanics involves how a 

specified total amount of energy E can be shared among a collection of molecules and 

within the internal (rotational, vibrational, electronic) and intermolecular (translational) 

degrees of freedom of these molecules when the molecules have a means for sharing or 

redistributing this energy (e.g., by collisions). The primary outcome of asking what is the 

most probable distribution of energy among a large number N of molecules within a 

container of volume V that is maintained in equilibrium by such energy-sharing at a 

specified temperature T is the most important equation in statistical mechanics, the 

Boltzmann population formula: 

 

Pj = Ωj exp(- Ej /kT)/Q. 

 

This equation expresses the probability Pj of finding the system (which, in the case 

introduced above, is the whole collection of N interacting molecules) in its jth quantum 

state, where Ej is the energy of this quantum state, T is the temperature in K, Ωj is the 

degeneracy of the jth state, and the denominator Q is the so-called partition function: 

 

Q = Σj Ωj exp(- Ej /kT). 

  

The classical mechanical equivalent of the above quantum Boltzmann population formula 

for a system with a total of M coordinates (collectively denoted q- they would be the 

internal and intermolecular coordinates of the N molecules in the system) and M 

momenta (denoted p) is: 

 

P(q,p) = h-M exp (- H(q, p)/kT)/Q, 
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where H is the classical Hamiltonian, h is Planck's constant, and the classical partition 

function Q is 

 

Q = h-M ∫ exp (- H(q, p)/kT) dq dp . 

  

This probability density expression, which must integrate to unity, contains the factor of 

h-M because, as we saw in Chapter 1 when we learned about classical action, the integral 

of a coordinate-momentum product has units of Planck’s constant.  

Notice that the Boltzmann formula does not say that only those states of one 

particular energy can be populated; it gives non-zero probabilities for populating all states 

from the lowest to the highest. However, it does say that states of higher energy Ej are 

disfavored by the exp (- Ej /kT) factor, but, if states of higher energy have larger 

degeneracies Ωj (which they usually do), the overall population of such states may not be 

low. That is, there is a competition between state degeneracy Ωj, which tends to grow as 

the state's energy grows, and exp (-Ej /kT) which decreases with increasing energy. If the 

number of particles N is huge, the degeneracy Ω grows as a high power (let’s denote this 

power as K) of E because the degeneracy is related to the number of ways the energy can 

be distributed among the N molecules. In fact, K grows at least as fast as N. As a result of 

Ω growing as EK, the product function P(E) = EK exp(-E/kT) has the form shown in Fig. 

7.1 (for K=10, for illustrative purposes). 
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Figure 7.1 Probability Weighting Factor P(E) as a Function of E for K = 10. 

 

By taking the derivative of this function P(E) with respect to E, and finding the energy at 

which this derivative vanishes, one can show that this probability function has a peak at 

E* = K kT, and that at this energy value, 

 

P(E*) = (KkT)K exp(-K), 

  

By then asking at what energy E' the function P(E) drops to exp(-1) of this maximum 

value P(E*):  

 

P(E') = exp(-1) P(E*),  

 

one finds 

 

E' = K kT (1+ (2/K)1/2 ). 

  

So the width of the P(E) graph, measured as the change in energy needed to cause P(E) to 

drop to exp(-1) of its maximum value divided by the value of the energy at which P(E) 

assumes this maximum value, is 

 

(E'-E*)/E* = (2/K)1/2. 

  

This width gets smaller and smaller as K increases.  

The primary conclusion is that as the number N of molecules in the sample grows, 

which, as discussed earlier, causes K to grow, the energy probability function becomes 

more and more sharply peaked about the most probable energy E*. This, in turn, suggests 

that we may be able to model, aside from infrequent fluctuations which we may also find 

a way to take account of, the behavior of systems with many molecules by focusing on 

the most probable situation (i.e., those having the energy E*) and ignoring or making 

small corrections for deviations from this case. 
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It is for the reasons just shown that for macroscopic systems near equilibrium, in 

which N (and hence K) is extremely large (e.g., N ~ 1010 to 1024), only the most probable 

distribution of the total energy among the N molecules need be considered. This is the 

situation in which the equations of statistical mechanics are so useful. Certainly, there are 

fluctuations (as evidenced by the finite width of the above graph) in the energy content of 

the N-molecule system about its most probable value. However, these fluctuations 

become less and less important as the system size (i.e., N) becomes larger and larger. 

 

1. Basis of the Boltzmann Population Formula 

To understand how this narrow Boltzmann distribution of energies arises when 

the number of molecules N in the sample is large, we consider a system composed of M 

identical containers, each having volume V, and each made out a material that allows for 

efficient heat transfer to its surroundings (e.g., through collisions of the molecules inside 

the volume with the walls of the container) but material that does not allow any of the N 

molecules in each container to escape. These containers are arranged into a regular lattice 

as shown in Fig. 7.2 in a manner that allows their thermally conducting walls to come 

into contact. Finally, the entire collection of M such containers is surrounded by a 

perfectly insulating material that assures that the total energy (of all NxM molecules) can 

not change. So, this collection of M identical containers each containing N molecules 

constitutes a closed (i.e., with no molecules coming or going) and isolated (i.e., so total 

energy is constant) system. 
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Figure 7.2 Collection of M identical cells having energy-conducting walls that do not 

allow molecules to pass between cells. 

 

2. Equal a priori Probability Assumption 

One of the fundamental assumptions of statistical mechanics is that, for a closed 

isolated system at equilibrium, all quantum states of the system having energy equal to 

the energy E with which the system is prepared are equally likely to be occupied. This is 

called the assumption of equal a priori probability for such energy-allowed quantum 

states. The quantum states relevant to this case are not the states of individual molecules, 

nor are they the states of N of the molecules in one of the containers of volume V. They 

are the quantum states of the entire system comprised of NxM molecules. Because our 

system consists of M identical containers, each with N molecules in it, we can describe 

the quantum states of the entire system in terms of the quantum states of each such 

container. It may seem foolish to be discussing quantum states of the large system 

containing NxM molecules, given what I said earlier about the futility in trying to find 

such states. However, what I am doing at this stage is to carry out a derivation that is 

Each Cell Contains N molecules in Volume V. There
are M such Cells and the Total Energy of These M
Cells is E
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based upon such quantum states but whose final form and final working equations will 

not actually require one to know or even be able to have these states in hand.  

 Let’s pretend that we know the quantum states that pertain to N molecules in a 

container of volume V as shown in Fig. 7.2, and let’s label these states by an index J.  

That is J=1 labels the lowest-energy state of N molecules in the container of volume V, 

J=2 labels the second such state, and so on. As I said above, I understand it may seem 

daunting to think of how one actually finds these N-molecule eigenstates. However, we 

are just deriving a general framework that gives the probabilities of being in each such 

state. In so doing, we are allowed to pretend that we know these states. In any actual 

application, we will, of course, have to use approximate expressions for such energies.  

Assuming that the walls that divide the M containers play no role except to allow 

for collisional (i.e., thermal) energy transfer among the containers, an energy-labeling for 

states of the entire collection of M containers can be realized by giving the number of 

containers that exist in each single-container J-state. This is possible because, under the 

assumption about the role of the walls just stated, the energy of each M-container state is 

a sum of the energies of the M single-container states that comprise that M-container 

state. For example, if M= 9, the label 1, 1, 2, 2, 1, 3, 4, 1, 2 specifies the energy of this 9-

container state in terms of the energies {εϕ} of the states of the 9 containers: E = 4 ε1 + 3 

ε2 + ε3 + ε4. Notice that this 9-container state has the same energy as several other 9-

container states; for example, 1, 2, 1, 2, 1, 3, 4, 1, 2 and 4, 1, 3, 1, 2, 2, 1, 1, 2 have the 

same energy although they are different individual states. What differs among these 

distinct states is which box occupies which single-box quantum state. 

 The above example illustrates that an energy level of the M-container system can 

have a high degree of degeneracy because its total energy can be achieved by having the 

various single-container states appear in various orders. That is, which container is in 

which state can be permuted without altering the total energy E. The formula for how 

many ways the M container states can be permuted such that:  

i. there are nJ  containers appearing in single-container state J, with 

ii. a total of M containers, is 

 

Ω(n) = M!/{ΠJnJ!}. 
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Here n = {n1, n2, n3, …nJ, …} denote the number of containers existing in single-

container states 1, 2, 3, … J, ….  This combinatorial formula reflects the permutational 

degeneracy arising from placing n1 containers into state 1, n2 containers into state 2, etc.  

 If we imagine an extremely large number of containers and we view M as well as 

the {nJ} as being large numbers (n.b., we will soon see that this is the case at least for the 

most probable distribution that we will eventually focus on), we can ask- for what 

choices of the variables {n1, n2, n3, …nJ, …} is this degeneracy function Ω(n) a 

maximum? Moreover, we can examine Ω(n) at its maximum and compare its value at 

values of the {n} parameters changed only slightly from the values that maximized Ω(n). 

As we will see, Ω is very strongly peaked at its maximum and decreases extremely 

rapidly for values of {n} that differ only slightly from the optimal values. It is this 

property that gives rise to the very narrow energy distribution discussed earlier in this 

Chapter. So, let’s take a closer look at how this energy distribution formula arises. 

 We want to know what values of the variables {n1, n2, n3, …nJ, …} make Ω = 

M!/{ΠJnJ!} a maximum. However, all of the {n1, n2, n3, …nJ, …} variables are not 

independent; they must add up to M, the total number of containers, so we have a 

constraint 

 

ΣJ nJ  = M 

 

that the variables must obey. The {nj} variables are also constrained to give the total 

energy E of the M-container system when summed as  

 

ΣJ nJεJ = E. 

 

We have two problems: i. how to maximize Ω and ii. how to impose these constraints. 

Because Ω takes on values greater than unity for any choice of the {nj}, Ω will 

experience its maximum where lnΩ has its maximum, so we can maximize ln Ω if doing 

so helps. Because the nJ variables are assumed to take on large numbers (when M is 
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large), we can use Sterling’s approximation for the natural logarithm of the factorial of a 

large number:  

 

ln X! = X ln X – X 

 

to approximate ln Ω as follows: 

 

ln Ω = ln M! - ΣJ {nJ ln nJ – nJ). 

 

This expression will prove useful because we can take its derivative with respect to the nJ 

variables, which we need to do to search for the maximum of ln Ω.  

To impose the constraints ΣJ nJ  = M and ΣJ nJ εJ = E we use the technique of 

Lagrange multipliers. That is, we seek to find values of {nJ} that maximize the following 

function: 

 

F = ln M! - ΣJ {nJ ln nJ – nJ) - α(ΣJnJ – M) -β(ΣJ nJ εJ –E). 

 

Notice that this function F is exactly equal to the lnΩ function we wish to maximize 

whenever the {nJ} variables obey the two constraints. So, the maxima of F and of lnΩ are 

identical if the {nJ} have values that obey the constraints. The two Lagrange multipliers α 

and β are introduced to allow the values of {nJ} that maximize F to ultimately obey the 

two constraints. That is, we first find values of the {nJ} variables that make F maximum; 

these values will depend on α and β and will not necessarily obey the constraints. 

However, we will then choose α and β to assure that the two constraints are obeyed. This 

is how the Lagrange multiplier method works. 

 Taking the derivative of F with respect to each independent nK variable and 

setting this derivative equal to zero gives: 
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- ln nK  - α - β εK = 0. 

 

This equation can be solved to give nK = exp(- α) exp(- β εK). Substituting this result into 

the first constraint equation gives M = exp(- α) ΣJ exp(- β εJ), which allows us to solve for  

exp(- α) in terms of M. Doing so, and substituting the result into the expression for nK 

gives: 

 

nK = M  exp(- β εK)/Q 

 

where 

 

Q = ΣJ exp(- β εJ). 

 

Notice that the nK are, as we assumed earlier, large numbers if M is large because nK is 

proportional to M.  Notice also that we now see the appearance of the partition function 

Q and of exponential dependence on the energy of the state that gives the Boltzmann 

population of that state. 

 It is possible to relate the β Lagrange multiplier to the total energy E of the M 

containers by summing the number of containers in the Kth quantum state nK multiplied 

by the energy of that quantum state εK 

 

E = ΣK nK εK = M ΣK εK exp(- β εK)/Q 

 

= - M (∂lnQ/∂β)N,V. 

 

This shows that the average energy of a container, computed as the total energy E divided 

by the number M of such containers can be computed as a derivative of the logarithm of 

the partition function Q.  As we show in the following Section of this Chapter, all 

thermodynamic properties of the N molecules in the container of volume V can be 

obtained as derivatives of the natural logarithm of this Q function. This is why the 

partition function plays such a central role in statistical mechanics. 
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 To examine the range of energies over which each of the M single-container 

system varies with appreciable probability, let us consider not just the degeneracy Ω(n*) 

of that set of variables {n*} = {n*1, n*2, …} that makes Ω maximum, but also the 

degeneracy Ω(n) for values of {n1, n2, …} differing by small amounts {δn1, δn2, …} from 

the optimal values {n*}. Expanding ln Ω as a Taylor series in the parameters {n1, n2, …} 

and evaluating the expansion in the neighborhood of the values {n*}, we find: 

 

ln Ω = ln Ω({n*1, n*2, …}) + ΣJ  (∂lnΩ/∂nJ) δnJ + 1/2 ΣJ,K (∂2lnΩ/∂nJ∂nK) δnJ δnK + … 

 

We know that all of the first derivative terms (∂lnΩ/∂nJ) vanish because lnΩ has been 

made maximum at {n*}. To evaluate the second derivative terms, we first note that the 

first derivative of lnΩ is 

 

(∂lnΩ/∂nJ)  = ∂(ln M! - ΣJ {nJ ln nJ – nJ))/∂nJ = -ln(nJ). 

 

So the second derivatives needed to complete the Taylor series through second order are: 

 

(∂2lnΩ/∂nJ∂nK) = - δJ,K nj
-1. 

 

Using this result, we can expand Ω(n) in the neighborhood of {n*} in powers of δnJ = nJ-

nJ* as follows: 

 

ln Ω(n) = ln Ω(n*) – 1/2 ΣJ (δnJ)2/nJ*, 

 

or, equivalently,  

 

Ω(n) = Ω(n*) exp[-1/2ΣJ (δnJ)2/nJ*] 

 

This result clearly shows that the degeneracy, and hence, by the equal a priori probability 

hypothesis, the probability of the M-container system occupying a state having {n1, n2, ..} 



 502 

falls off exponentially as the variables nJ move away from their most-probable values 

{n*}.  

 

3. The Thermodynamic Limit 

 As we noted earlier, the nJ* are proportional to M (i.e., nJ* = M exp(-βεJ)/Q = fJ 

M), so when considering deviations δnJ away from the optimal nJ*, we should consider 

deviations that are also proportional to M: δnJ = M δfJ. In this way, we are treating 

deviations of specified percentage or fractional amount which we denote fJ. Thus, the 

ratio (δnJ)2/nJ* that appears in the above exponential has an M-dependence that allows 

Ω(n) to be written as: 

 

Ω(n) = Ω(n*) exp[-M/2ΣJ (δfJ)2/fJ*], 

 

where fJ* and δfJ are the fraction and fractional deviation of containers in state J: fJ* = 

nJ*/M and δfJ = δnJ/M. The purpose of writing Ω(n) in this manner is to explicitly show 

that, in the so-called thermodynamic limit, when M approaches infinity, only the most 

probable distribution of energy {n*} need to be considered because only {δfJ=0} is 

important as M approaches infinity. 

 

4. Fluctuations 

 Let’s consider this very narrow distribution issue a bit further by examining 

fluctuations in the energy of a single container around its average energy Eave = E/M. We 

already know that the number of containers in a given state K can be written as  

nK = M  exp(- β εK)/Q. Alternatively, we can say that the probability of a container 

occupying the state J is: 

 

PJ  =  exp(- β εK)/Q. 

 

Using this probability, we can compute the average energy Eave  as: 

 

Eave = ΣJ PJ εJ = ΣJ εJ exp(- β εK)/Q = - (∂lnQ/∂β)N,V. 
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To compute the fluctuation in energy, we first note that the fluctuation is defined as the 

average of the square of the deviation in energy from the average:  

 

(E-Eave))2
ave. = ΣJ (εJ –Eave)2 PJ  = ΣJ PJ (εJ

2  - 2εJ Eave +Eave
2) = ΣJ PJ(εJ

2 – Eave
2). 

 

The following identity is now useful for further re-expressing the fluctuations: 

 

(∂2lnQ/∂β2 )N,V
 = ∂(-ΣJεJ exp(-βεJ)/Q)/∂β 

 

= ΣJ εJ
2 exp(-βεJ)/Q - {ΣJ εJexp(-βεJ)/Q}{{ΣL εLexp(-βεL)/Q} 

 

Recognizing the first factor immediately above as ΣJ εJ
2 PJ, and the second factor as  

- Eave
2, and noting that ΣJ PJ = 1, allows the fluctuation formula to be rewritten as: 

 

(E-Eave))2
ave.  = (∂2lnQ/∂β2 )N,V  = - (∂(Eave)/∂β)N,V). 

 

Because the parameter β can be shown to be related to the Kelvin temperature T as β = 

1/(kT), the above expression can be re-written as: 

 

(E-Eave))2
ave = - (∂(Eave)/∂β)N,V) = kT2 (∂(Eave)/∂T)N,V. 

 

Recognizing the formula for the constant-volume heat capacity 

 

CV = (∂(Eave)/∂T)N,V 

 

allows the fractional fluctuation in the energy around the mean energy Eave = E/M to be 

expressed as: 

 

(E-Eave))2
ave/Eave

2  = kT2 CV/Eave
2. 
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 What does this fractional fluctuation formula tell us? On its left-hand side it gives 

a measure of the fractional spread of energies over which each of the containers ranges 

about its mean energy Eave. On the right side, it contains a ratio of two quantities that are 

extensive properties, the heat capacity and the mean energy. That is, both CV and Eave will 

be proportional to the number N of molecules in the container as long as N is reasonably 

large. However, because the right-hand side involves CV/Eave
2, it is proportional to N-1 and 

thus will be very small for large N as long as CV does not become large. As a result, 

except near so-called critical points where the heat capacity does indeed become 

extremely large, the fractional fluctuation in the energy of a given container of N 

molecules will be very small (i.e., proportional to N-1). This finding is related to the 

narrow distribution in energies that we discussed earlier in this section. 

 Let’s look at the expression 

 

(E-Eave))2
ave/Eave

2  = kT2 CV/Eave
2 

 

in a bit more detail for a system that is small but still contains quite a few particles-a 

cluster of N Ar atoms at temperature T. If we assume that each of the Ar atoms in the 

cluster has 3/2 kT of kinetic energy and that the potential energy holding the cluster 

together is small and constant (so it cancels in E-Eave), Eave will be 3/2NkT and CV will be 

3/2 Nk. So,  

 

(E-Eave))2
ave/Eave

2 = kT2 CV/Eave
2 = kT2 3/2Nk /(3/2 NkT)2 = 2/3 N-1. 

 

In a nano-droplet of diameter 100 Å, with each Ar atom occupying a volume of ca. 4/3 π 

(3.8Å)3 = 232 Å3, there will be ca.  

 

N = 4/3 π 1003 /[4/3 π 3.83] = 1.8 x104 

 

Ar atoms. So, the average fractional spread in the energy  
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€ 

(E − Eave )
2

Eave
2 =

2
3N

= 0.006. 

 

That is, even for a very small nano-droplet, the fluctuation in the energy of the system is 

only a fraction of a percent (assuming CV is not large as near a critical point). This 

example shows why it is often possible to use thermodynamic concepts and equations 

even for very small systems, albeit realizing that fluctuations away from the most 

probable state are more important than in much larger systems. 

 

7.1. 2  Partition Functions and Thermodynamic Properties 

 

Let us now examine how this idea of the most probable energy distribution being 

dominant gives rise to equations that offer molecular-level expressions for other 

thermodynamic properties. The first equation is the fundamental Boltzmann population 

formula that we already examined: 

 

Pj = exp(- Ej /kT)/Q, 

 

which expresses the probability for finding the N-molecule system in its Jth quantum state 

having energy Ej. Sometimes, this expression is written as  

 

Pj = Ωj exp(- Ej /kT)/Q 

 

where now the index j is used to label an energy level of the system having energy Ej and 

degeneracy. It is important for the student to be used to either notation; a level is just a 

collection of those states having identical energy.  

 

1. System Partition Functions 

Using this result, it is possible to compute the average energy Eave, sometimes 

written as <E>, of the system 
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<E> = Σj Pj Ej , 

  

and, as we saw earlier in this Chapter, to show that this quantity can be recast as 

 

<E> = kT2 ∂(lnQ/∂T)N,V . 

 

To review how this proof is carried out, we substitute the expressions for Pj  and for Q 

into the expression for <E> (I will use the notation labeling energy levels rather than 

energy states to allow the student to become used to this) 

 

<E> = {Σj Ej  Ωj exp(-Ej/kT)}/{Σl  Ωl exp(-El/kT)}. 

 

By noting that ∂ (exp(-Ej/kT))/∂T = (1/kT2) Ej exp(-Ej/kT), we can then rewrite <E> as 

  

<E> = kT2 {Σj  Ωj∂ (exp(-Ej/kT))/∂T }/{Σl  Ωl exp(-El/kT)}. 

 

And then recalling that {∂X/∂T}/X = ∂lnX/∂T, we finally obtain 

 

<E> = kT2 (∂ln(Q)/∂T)N,V. 

 

All other equilibrium properties can also be expressed in terms of the partition 

function Q. For example, if the average pressure <p> is defined as the pressure of each 

quantum state (defined as how the energy of that state changes if we change the volume 

of the container by a small amount) 

 

pj = (∂Ej /∂V)N 

  

multiplied by the probability Pj for accessing that quantum state, summed over all such 

states, one can show, realizing that only Ej (not T or Ω) depend on the volume V, that 

 

<p> = Σj (∂Ej /∂V)N Ωj exp(- Ej /kT)/Q 
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= kT(∂lnQ/∂V)N,T . 

  

If you wonder why the energies EJ should depend on the volume V, think of the case of N 

gas-phase molecules occupying the container of volume V. You know that the 

translational energies of each of these N molecules depend on the volume through the 

particle-in-a-box formula  

 

€ 

Enx ,ny ,nz
=

h2

8mL2
(nx

2 + ny
2 + nz

2) . 

 

Changing V can be accomplished by changing the box length L. This makes it clear why 

the energies do indeed depend on the volume V. Of course, there are additional sources 

of the V-dependence of the energy levels. For example, as one shrinks V, the molecules 

become more crowded, so their intermolecular energies also change.  

Without belaboring the point further, it is possible to express all of the usual 

thermodynamic quantities in terms of the partition function Q. The average energy and 

average pressure are given above, as is the heat capacity. The average entropy is given as 

 

<S> = k lnQ + kT(∂lnQ/∂N)V,T 

 

the Helmholtz free energy A is 

 

A = -kT lnQ 

 

and the chemical potential µ is expressed as follows: 

 

µ = -kT (∂lnQ/∂N)T,V. 

 



 508 

As we saw earlier, it is also possible to express fluctuations in thermodynamic properties 

in terms of derivatives of partition functions and, thus, as derivatives of other properties. 

For example, the fluctuation in the energy <(E-<E>)2> was shown above to be given by 

 

<(E-<E>)2> = kT2 CV. 

 

The text Statistical Mechanics, D. A. McQuarrie, Harper and Row, New York (1977) has 

an excellent treatment of these topics and shows how all of these expressions are derived.  

So, if one were able to evaluate the partition function Q for N molecules in a 

volume V at a temperature T, either by summing the quantum-level degeneracy and  

exp(-Ej/kT) factors 

 

Q = Σj Ωj exp(- Ej /kT), 

 

or by carrying out the phase-space integral over all M of the coordinates and momenta of 

the system 

 

Q = h-M ∫ exp (- H(q, p)/kT) dq dp , 

 

one could then use the above formulas to evaluate any thermodynamic properties and 

their fluctuations as derivatives of lnQ. 

The averages discussed above, derived using the probabilities  

PJ = ΩJ exp(- EJ /kT)/Q associated with the most probable distribution, are called 

ensemble averages with the set of states associated with the specified values of N, V, and 

T constituting what is called a canonical ensemble. Averages derived using the 

probabilities PJ = constant for all states associated with specified values of N, V, and E 

are called ensemble averages for a microcanonical ensemble. There is another kind of 

ensemble that is often used in statistical mechanics; it is called the grand canonical 

ensemble and relates to systems with specified volume V, temperature T, and chemical 

potential µ (rather than particle number N). To obtain the partition function (from which 
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all thermodynamic properties are obtained) in this case, one considers maximizing the 

same function 

 

Ω(n) = M!/{ΠJnJ!} 

 

introduced earlier, but now considering each quantum (labeled J) as having an energy 

EJ(N,V) that depends on the volume and on how may particles occupy this volume. The 

variables nJ(N) are now used to specify how many of the containers introduced earlier 

contain N particles and are in the Jth quantum state.  These variables have to obey the 

same two constraints as for the canonical ensemble 

 

ΣJ,N nJ(N) = M 

 

ΣJ,N nJ(N) εJ(N,V) = E, 

 

but they also are required to obey 

 

ΣJ,N N nJ(N) = Ntotal 

 

which means that the sum adds up to the total number of particles in the isolated system’s 

large container that was divided into M smaller container. In this case, the walls 

separating each small container are assumed to allow for energy transfer (as in the 

canonical ensemble) and for molecules to move from one container to another (unlike the 

canonical ensemble). Using Lagrange multipliers as before to maximize lnΩ(n) subject to 

the above three constraints involves maximizing  

 

F = ln M!-ΣJ,N {nJ,N ln nJ,N – nJ,N) - α(ΣJ,N nJ,N – M) -β(ΣJ,N nJ,N εJ –E) –γ(ΣJ,N N nJ,N(N) - Ntotal) 

 

and gives 

 

- ln nK,N  - α - β εK -γ Ν = 0 
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or 

 

nK,N = exp[- α - β εK -γ Ν]. 

 

Imposing the first constraint gives 

 

M = ΣK,N exp[- α - β εK -γ Ν], or  

 

€ 

exp(−α) =
M

exp(−βεK (N) − γN)
K ,N
∑

=
M

Q(γ,V ,T)
 

 

where the partition function Q is defined by the sum in the denominator. So, now the 

probability of the system having N particles and being in the Kth quantum state is 

 

€ 

PK (N) =
exp(−βεK (N,V ) − γN)

Q
. 

 

Very much as was shown earlier for the canonical ensemble, one can then express 

thermodynamic properties (e.g., E, CV, etc.) in terms of derivatives of lnQ. The text 

Statistical Mechanics, D. A. McQuarrie, Harper and Row, New York (1977) goes 

through these derivations in good detail, so I will not repeat them here because we 

showed how to do so when treating the canonical ensemble. To summarize them briefly, 

one again uses β = 1/(kT), finds that γ is related to the chemical potential µ as  

 

γ = - µ β  

 

and obtains 

 

€ 

p = PK (N){
−∂εK (N,V )

∂VN ,K
∑ }N = kT ∂ lnQ

∂V
 

 
 

 

 
 

µ,T
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€ 

Nave = NPK (N) =
N ,K
∑ kT ∂ lnQ

∂µ

 

 
 

 

 
 
V ,T

 

 

€ 

S = kT ∂ lnQ
∂T

 

 
 

 

 
 

µ,V

= k lnQ  

 

€ 

E = εK (N)PK (N)
N ,K
∑ = kT 2 ∂ lnQ

∂T
 

 
 

 

 
 

µ,V

 

 

€ 

Q = exp(−βεK (N) + µβN)
N ,K
∑ . 

 

The formulas look very much like those of the canonical ensemble, except for the result 

expressing the average number of molecules in the container Nave in terms of the 

derivative of the partition function with respect to the chemical potential µ. 

 

In addition to the equal a priori probability postulate stated earlier (i.e., that, in the 

thermodynamic limit (i.e., large N), every quantum state of an isolated system in 

equilibrium having fixed N, V, and E is equally probable), statistical mechanics makes 

another assumption. It assumes that, in the thermodynamic limit, the ensemble average 

(e.g., using equal probabilities PJ for all states of an isolated system having specified N, 

V, and E or using Pj = exp(- Ej /kT)/Q for states of a system having specified N, V, and T 

or using 

€ 

PK (N) =
exp(−βεK (N,V ) + µβN)

Q
 for the grand canonical case) of any quantity is 

equal to the long-time average of this quantity (i.e., the value one would obtain by 

monitoring the dynamical evolution of this quantity over a very long time). This second 

postulate implies that the dynamics of an isolated system spends equal amounts of time in 

every quantum state that has the specified N, V, and E; this is known as the ergodic 

hypothesis.  

 Let’s consider a bit more what the physical meaning or information content of 

partition functions is. Canonical ensemble partition functions represent the thermal-
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averaged number of quantum states that are accessible to the system at specified values of 

N, V, and T. This can be seen best by again noting that, in the quantum expression,  

 

Q = Σj Ωj exp(- Ej /kT) 

 

the partition function is equal to a sum of the number of quantum states in the jth  energy 

level multiplied by the Boltzmann population factor exp(-Ej/kT) of that level. So, Q is 

dimensionless and is a measure of how many states the system can access at temperature 

T. Another way to think of Q is suggested by rewriting the Helmholtz free energy 

definition given above as Q = exp(-A/kT). This identity shows that Q can be viewed as 

the Boltzmann population, not of a given energy E, but of a specified amount of free 

energy A.  

 For the microcanonical ensemble, the probability of occupying each state that has 

the specified values of N, V, and E is equal 

 

PJ  = 1/Ω(N,V, E) 

 

where Ω(N,V, E) is the total number of such states. In the microcanonical ensemble case, 

Ω(N,V, E) plays the role that Q plays in the canonical ensemble case; it gives the number 

of quantum states accessible to the system.  

 

2. Individual-Molecule Partition Functions 

 Keep in mind that the energy levels Ej and degeneracies Ωj and Ω(N,V, E) 

discussed so far are those of the full N-molecule system. In the special case for which the 

interactions among the molecules can be neglected (i.e., in the dilute ideal-gas limit) at 

least as far as expressing the state energies, each of the energies Ej can be written as a 

sum of the energies of each individual molecule: Ej = Σk=1,N  εj(k). In such a case, the 

above partition function Q reduces to a product of individual-molecule partition 

functions: 

 

Q = (N!)-1 qN 
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where the N! factor arises as a degeneracy factor having to do with the permutational 

indistinguishability of the N molecules (e.g., one must not count both εj(3) + εk(7) with 

molecule 3 in state j and molecule 7 in state k and εj(7) + εk(3) with molecule 7 in state j 

and molecule 3 in state k; they are the same state), and q is the partition function of an 

individual molecule 

 

q = Σl ωl exp(-εl/kT). 

 

Here, εl  is the energy of the lth level of the molecule and ωl is its degeneracy. 

 The molecular partition functions q, in turn, can be written as products of 

translational, rotational, vibrational, and electronic partition functions if the molecular 

energies εl  can be approximated as sums of such energies. Of course, these 

approximations are most appropriate to gas-phase molecules whose vibration and rotation 

states are being described at the lowest level.  

 The following equations give explicit expressions for these individual 

contributions to q in the most usual case of a non-linear polyatomic molecule: 

 

Translational:  

 

qt  = (2πmkT/h2)3/2 V, 

 

where m is the mass of the molecule and V is the volume to which its motion is 

constrained. For molecules constrained to a surface of area A, the corresponding result is 

qt  = (2πmkT/h2)2/2 A, and for molecules constrained to move along a single axis over a 

length L, the result is qt  = (2πmkT/h2)1/2 L. The magnitudes these partition functions can 

be computed, using m in amu, T in Kelvin, and L, A, or V in cm, cm2 or cm3, as 

 

qt = (3.28 x1013 mT)1/2,2/2,3/2 L, A, V. 
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Clearly, the magnitude of qt depends strongly on the number of dimensions the molecule 

and move around in. This is a result of the vast differences in translational state densities 

in 1, 2, and 3 dimensions; recall that we encountered these state-density issues in Chapter 

2. 

 

Rotational:  

 

qrot = π1/2/σ (8π2IAkT/h2)1/2  (8π2IBkT/h2)1/2 (8π2ICkT/h2)1/2, 

 

 where IA, IB, and IC are the three principal moments of inertia of the molecule (i.e., 

eigenvalues of the moment of inertia tensor). σ is the symmetry number of the molecule 

defined as the number of ways the molecule can be rotated into a configuration that is 

indistinguishable from its original configuration. For example, σ is 2 for H2 or D2, 1 for 

HD, 3 for NH3, and 12 for CH4. The magnitudes of these partition functions can be 

computed using bond lengths in Å and masses in amu and T in K, using 

 

(8π2IAkT/h2)1/2   =  9.75 x106 (I T)1/2 

 

Vibrational:  

 

qvib = Πk=1,3N-6 {exp(-hνj /2kT)/(1- exp(-hνj/kT))}, 

 

 where νj is the frequency of the jth harmonic vibration of the molecule, of which there are 

3N-6. If one wants to treat the vibrations at a level higher than harmonic, this expression 

can be modified by replacing the harmonic energies hνj by higher-level expressions. 

 

 Electronic:  

 

qe = ΣJ ωJ exp(-εJ/kT), 
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 where εJ and ωJ are the energies and degeneracies of the Jth electronic state; the sum is 

carried out for those states for which the product ωJ exp(-εJ/kT) is numerically significant 

(i.e., levels that any significant thermal population). It is conventional to define the 

energy of a molecule or ion with respect to that of its atoms. So, the first term in the 

electronic partition function is usually written as ωe exp(-De/kT), where ωe is the 

degeneracy of the ground electronic state and De is the energy required to dissociate the 

molecule into its constituent atoms, all in their ground electronic states.  

 

 Notice that the magnitude of the translational partition function is much larger 

than that of the rotational partition function, which, in turn, is larger than that of the 

vibrational function. Moreover, note that the 3-dimensional translational partition 

function is larger than the 2-dimensional, which is larger than the 1-dimensional. These 

orderings are simply reflections of the average number of quantum states that are 

accessible to the respective degrees of freedom at the temperature T which, in turn, 

relates to the energy spacings and degeneracies of these states. 

 The above partition function and thermodynamic equations form the essence of 

how statistical mechanics provides the tools for connecting molecule-level properties 

such as energy levels and degeneracies, which ultimately determine the Ej and the Ωj, to 

the macroscopic properties such as <E>, <S>, <p>, µ, etc. 

 If one has a system for which the quantum energy levels are not known, it may be 

possible to express all of the thermodynamic properties in terms of the classical partition 

function, if the system could be adequately described by classical dynamics.  This 

partition function is computed by evaluating the following classical phase-space integral 

(phase space is the collection of coordinates q and conjugate momenta p as we discussed 

in Chapter 1) 

 

Q = h-NM (N!)-1 ∫ exp (- H(q, p)/kT) dq dp. 

 

In this integral, one integrates over the internal (e.g., bond lengths and angles), 

orientational, and translational coordinates and momenta of the N molecules. If each 

molecule has K internal coordinates, 3 translational coordinates, and 3 orientational 
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coordinates, the total number of such coordinates per molecule is M = K + 6. One can 

then compute all thermodynamic properties of the system using this Q in place of the 

quantum Q in the equations given above for <E>, <p>, etc. 

 The classical partition functions discussed above are especially useful when 

substantial intermolecular interactions are present (and, thus, where knowing the quantum 

energy levels of the N-molecule system is highly unlikely). In such cases, the classical 

Hamiltonian is often written in terms of H0 which contains all of the kinetic energy 

factors as well as all of the potential energies other than the intermolecular potentials, and 

the intermolecular potential U, which depends only on a subset of the coordinates: H = H0 

+ U.  For example, let us assume that U depends only on the relative distances between 

molecules (i.e., on the 3N translational degrees of freedom which we denote r). Denoting 

all of the remaining coordinates as y, the classical partition function integral can be re-

expressed as follows: 

 

Q = {h-NM (N!)-1∫ exp (- H0(y, p)/kT) dy dp  {∫ exp (-U(r)/kT) dr}. 

 

The factor 

 

Qideal = h-NM (N!)-1 ∫ exp (- H0(y, p)/kT) dy dp VN 

 

would be the partition function if the Hamiltonian H contained no intermolecular 

interactions U. The VN factor arises from the integration over all of the translational 

coordinates if U(r) is absent.  The other factor 

 

Qinter =  (1/VN) {∫ exp (-U(r)/kT) dr} 

 

contains all the effects of intermolecular interactions and reduces to unity if the potential 

U vanishes. If, as the example considered here assumes, U only depends on the positions 

of the centers of mass of the molecules (i.e., not on molecular orientations or internal 

geometries), the Qideal  partition function can be written in terms of the molecular 

translational, rotational, and vibrational partition functions shown earlier: 
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Qideal = (N!)-1 {(2πmkT/h2)3/2 V π1/2/σ (8π2IAkT/h2)1/2  (8π2IBkT/h2)1/2 (8π2ICkT/h2)1/2 

 

 Πk=1,3N-6 {exp(-hνj /2kT)/(1- exp(-hνj/kT))} ΣJ ωJ exp(-εJ/kT)}N . 

 

Because all of the equations that relate thermodynamic properties to partition functions 

contain lnQ, all such properties will decompose into a sum of two parts, one coming from 

lnQideal  and one coming from lnQinter. The latter contains all the effects of the 

intermolecular interactions. This means that, in this classical mechanics case, all the 

thermodynamic equations can be written as an ideal component plus a part that arises 

from the intermolecular forces. Again, the Statistical Mechanics text by McQuarrie is a 

good source for reading more details on these topics. 

 

7.1.3. Equilibrium Constants in Terms of Partition Functions 

 One of the most important and useful applications of statistical thermodynamics 

arises in the relation giving the equilibrium constant of a chemical reaction or for a 

physical transformation (e.g., adsorption of molecules onto a metal surface or sublimation 

of molecules from a crystal) in terms of molecular partition functions. Specifically, for 

any chemical or physical equilibrium (e.g., the former could be the HF ⇔ H+ + F- 

equilibrium; the latter could be H2O(l) ⇔ H2O(g)), one can relate the equilibrium 

constant (expressed in terms of numbers of molecules per unit volume or per unit area, 

depending on whether species undergo translational motion in 3 or 2 dimensions) in 

terms of the partition functions of these molecules. For example, in the hypothetical 

chemical equilibrium A + B ⇔ C, the equilibrium constant K can be written, if the 

species can be treated as having negligibly weak intermolecular potentials, as: 

 

K = (NC/V)/[(NA/V) (NB/V)] = (qC/V)/[(qA/V) (qB/V)]. 

 

Here, qJ is the partition function for molecules of type J confined to volume V at 

temperature T. As another example consider the isomerization reaction involving the 
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normal (N) and zwitterionic (Z) forms of arginine that were discussed in Chapter 5. Here, 

the pertinent equilibrium constant would be: 

 

K = (NZ/V)/[(NN/V)] = (qZ/V)/[(qN/V)]. 

 

So, if one can evaluate the partition functions q for reactant and product molecules in 

terms of the translational, electronic, vibrational, and rotational energy levels of these 

species, one can express the equilibrium constant in terms of these molecule-level 

properties. 

 Notice that the above equilibrium constant expressions equate ratios of species 

concentrations (in, numbers of molecules per unit volume) to ratios of corresponding 

partition functions per unit volume. Because partition functions are a count of the number 

of quantum states available to the system (i.e., the average density of quantum states), 

this means that we equate species number densities to quantum state densities when we 

use the above expressions for the equilibrium constant. In other words, statistical 

mechanics produces equilibrium constants related to numbers of molecules (i.e., number 

densities) not molar or molal concentrations.  

 

7.2. Monte Carlo Evaluation of Properties 

 A tool that has proven extremely powerful in statistical mechanics since 

computers became fast enough to permit simulations of complex systems is the Monte 

Carlo (MC) method. This method allows one to evaluate the integrations appearing in the 

classical partition function described above by generating a sequence of configurations 

(i.e., locations of all of the molecules in the system as well as of all the internal 

coordinates of these molecules) and assigning a weighting factor to these configurations. 

By introducing an especially efficient way to generate configurations that have high 

weighting, the MC method allows us to simulate extremely complex systems that may 

contain millions of molecules.  

 To appreciate why it is useful to have a tool such as MC, let’s consider how one 

might write a computer program to evaluate the classical partition function 
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Q = h-NM (N!)-1 ∫ exp (- H(q, p)/kT) dq dp 

 

For a system consisting of N Ar atoms in a box of volume V at temperature T. The 

classical Hamiltonian H(q,p) consists of a sum of kinetic and inter-atomic potential 

energies 

 

€ 

H(q, p) =
pi
2

2m
+V (q)

i=1

N

∑  

 

The integration over the 3N momentum variables can be carried out analytically and 

allows Q to be written as 

 

€ 

Q =
1
N!

2πmkT
h2

 

 
 

 

 
 
3N / 2

exp(−V (q1,q2,...q3N )
kT

)∫ dq1dq2 ...dq3N . 

 

The contribution to Q provided by the integral over the coordinates is often called the 

configurational partition function 

 

€ 

Qconfig = exp(−V (q1,q2,...q3N )
kT

)∫ dq1dq2...dq3N  

 

If the density of the N Ar atoms is high, as in a liquid or solid state, the potential V will 

depend on the 3N coordinates of the Ar atoms in a manner that would not allow 

substantial further approximations to be made. One would thus be faced with evaluating 

an integral over 3N spatial coordinates of a function that depends on all of these 

coordinates. If one were to discretize each of the 3N coordinate axes using say K points 

along each axis, the numerical evaluation of this integral as a sum over the 3N 

coordinates would require computational effort scaling as K3N. Even for 10 Ar atoms with 

each axis having K = 10 points, this is of the order of 1030 computer operations. Clearly, 

such a straightforward evaluation of this classical integral would be foolish to undertake.  

 The MC procedure allows one to evaluate such high-dimensional integrals by 
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1. not dividing each of the 3N axes into K discrete points, but rather 

2. selecting values of q1, q2, …q3N for which the integrand exp(-V/kT) is non-negligible, 

while also 

3. avoiding values of q1, q2, …q3N for which the integrand exp(-V/kT) is small enough to 

neglect.  

By then summing over only values of q1, q2, …q3N that meet these criteria, the MC 

process can estimate the integral. Of course, the magic lies in how one designs a rigorous 

and computationally efficient algorithm for selecting those q1, q2, …q3N that meet the 

criteria.  

 To illustrate how the MC process works, let us consider carrying out a MC 

simulation representative of liquid water at some density ρ and temperature T. One 

begins by placing N water molecules in a box of volume V chosen such that N/V 

reproduces the specified density. To effect the MC process, we must assume that the total 

(intramolecular and intermolecular) potential energy V of these N water molecules can be 

computed for any arrangement of the N molecules within the box and for any values of 

the internal bond lengths and angles of the water molecules. Notice that, as we showed 

above when considering the Ar example, V does not include the kinetic energy of the 

molecules; it is only the potential energy. Often, this energy V is expressed as a sum of 

intra-molecular bond-stretching and bending contributions, one for each molecule, plus a 

pair-wise additive intermolecular potential: 

 

V = ΣJ V(internal)J + ΣJ,K  V(intermolecular)J,K, 

 

although the MC process does not require that one employ such a decomposition; the 

energy V could be computed in other ways, if appropriate. For example, V might be 

evaluated as the Born-Oppenheimer energy if an ab initio electronic structure calculation 

on the full N-molecule system were feasible. The MC process does not depend on how V 

is computed, but, most commonly, it is evaluated as shown above.  

 

7.2.1 Metropolis Monte Carlo 
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 In each step of the MC process, this potential energy V is evaluated for the current 

positions of the N water molecules. In its most common and straightforward 

implementation known as the Metropolis Monte-Carlo process, a single water molecule is 

then chosen at random and one of its internal (bond lengths or angle) or external (position 

or orientation) coordinates is selected at random. This one coordinate (q) is then altered 

by a small amount (q → q +δq) and the potential energy V is evaluated at the new 

configuration (q+δq). The amount δq by which coordinates are varied is usually chosen 

to make the fraction of MC steps that are accepted (by following the procedure detailed 

below) approximately 50%. This has been shown to optimize the performance of the MC 

algorithm.  

 In implementing the MC process, it is usually important to consider carefully how 

one defines the coordinates q that will be used to generate the MC steps. For example, in 

the case of N Ar atoms discussed earlier, it might be acceptable to use the 3N Cartesian 

coordinates of the N atoms. However, for the water example, it would be very inefficient 

to employ the 9N Cartesian coordinates of the N water molecules. Displacement of, for 

example, one of the H atoms along the x-axis while keeping all other coordinates fixed 

would alter the intramolecular O-H bond energy and the H-O-H bending energy as well 

as the intermolecular hydrogen bonding energies to neighboring water molecules. The 

intramolecular energy changes would likely be far in excess of kT unless a very small 

coordinate change δq were employed. Because it is important to the efficiency of the MC 

process to make displacements δq that produce ca. 50% acceptance, it is better, for the 

water case, to make use of coordinates such as the center of mass and orientation 

coordinates of the water molecules (for which larger displacements produce energy 

changes within a few kT) and smaller displacements of the O-H stretching and H-O-H 

bending coordinates (to keep the energy change within a few kT).  

 Another point to make about how the MC process is often used is that, when the 

inter-molecular energy is pair wise additive, evaluation of the energy change V(q+δq) – 

V(q) = δV accompanying the change in q requires computational effort that is 

proportional to the number N of molecules in the system because only those factors 

V(intermolecular)J,K, with J or K equal to the single molecule that is displaced need be 

computed.  This is why pair wise additive forms for V are often employed. 
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 Let us now return to how the MC process is implemented. If the energy change 

δV is negative (i.e., if the potential energy is lowered by the coordinate displacement), 

the change in coordinate δq is allowed to occur and the resulting new configuration is 

counted among the MC-accepted configurations. On the other hand, if δV is positive, the 

move from q to q + δq is not simply rejected (to do so would produce an algorithm 

directed toward finding a minimum on the energy landscape, which is not the goal). 

Instead, the quantity P = exp(-δV/kT) is used to compute the probability for accepting 

this energy-increasing move. In particular, a random number between, for example, 0.000 

and 1.000 is selected. If the random number is greater than P (expressed in the same 

decimal format), then the move is rejected. If the random number is less than P, the move 

is accepted and the new location is included among the set of MC-accepted 

configurations. Then, new water molecule and its internal or external coordinate are 

chosen at random and the entire process is repeated.  

In this manner, one generates a sequence of MC-accepted moves representing a 

series of configurations for the system of N water molecules. Sometimes this series of 

configurations is called a Monte Carlo trajectory, but it is important to realize that there is 

no dynamics or time information in this series. This set of configurations has been shown 

to be properly representative of the geometries that the system will experience as it 

moves around at equilibrium at the specified temperature T (n.b., T is the only way that 

information about the molecules' kinetic energy enters the MC process), but no time or 

dynamical attributes are contained in it.  

As the series of accepted steps is generated, one can keep track of various 

geometrical and energetic data for each accepted configuration. For example, one can 

monitor the distances R among all pairs of oxygen atoms in the water system being 

discussed and then average this data over all of the accepted steps to generate an oxygen-

oxygen radial distribution function g(R) as shown in Fig. 7.3. Alternatively, one might 

accumulate the intermolecular interaction energies between pairs of water molecules and 

average this over all accepted configurations to extract the cohesive energy of the liquid 

water.  
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Figure 7.3.  Radial distribution functions between pairs of Oxygen atoms in H2O at three 

different temperatures. 

 

 The MC procedure also allows us to compute the equilibrium average of any 

property A(q) that depends on the coordinates of the N molecules. Such an average 

would be written in terms of the normalized coordinate probability distribution function 

P(q) as: 

 

€ 

< A >= P(q)∫ A(q)dq =
exp(−βV (q))A(q)dq∫
exp(−βV (q))dq∫

. 

 

The denominator in the definition of P(q) is, of course, proportional to the coordinate-

contribution to the partition function Q. In the MC process, this average is computed by 

forming the following sum over the M MC-accepted configurations qJ: 

 

€ 

< A >=
1
M

A(qJ )
J=1

M

∑ . 

 

In most MC simulations, millions of accepted steps contribute to the above averages. At 

first glance, it may seem that such a large number of steps represent an extreme 

computational burden. However, recall that straightforward discretization of the 3N axes 
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produced a result whose effort scaled as K3N, which is unfeasible even for small numbers 

of molecules 

 So, why do MC simulations work when the straightforward way fails? That is, 

how can one handle thousands or millions of coordinates when the above analysis would 

suggest that performing an integral over so many coordinates would require K3N 

computations? The main thing to understand is that the K-site discretization of the 3N 

coordinates is a stupid way to perform the above integral because there are many (in fact, 

most) coordinate values where the value of the quantity A whose average one wants 

multiplied by exp(-βV) is negligible. On the other hand, the MC algorithm is designed to 

select (as accepted steps) those coordinates for which exp(-βV) is non-negligible. So, it 

avoids configurations that are stupid and focuses on those for which the probability factor 

is largest. This is why the MC method works!  

The standard Metropolis variant of the MC procedure was described above where 

its rules for accepting or rejecting trial coordinate displacements δq were given. There are 

several other ways of defining rules for accepting or rejecting trial MC coordinate 

displacements, some of which involve using information about the forces acting on the 

coordinates, all of which can be shown to generate a series of MC-accepted 

configurations consistent with an equilibrium system. The book Computer Simulations of 

Liquids, M. P. Allen and D. J. Tildesley, Oxford U. Press, New York (1997) provides 

good descriptions of these alternatives to the Metropolis MC method, so I will not go 

further into these approaches here.    

 

7.2.2 Umbrella Sampling 

 It turns out that the MC procedure as outlined above is a highly efficient method 

for computing multidimensional integrals of the form 

 

∫ P(q) A(q) dq 

 

where P(q) is a normalized (positive) probability distribution and A(q) is any property 

that depends on the multidimensional variable q.  
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There are, however, cases where this conventional MC approach needs to be 

modified by using so-called umbrella sampling. To illustrate how this is done and why it 

is needed, suppose that one wanted to use the MC process to compute an average, with 

exp(-βV(q)) as the weighting factor, of a function A(q) that is large whenever two or 

more molecules have high (i.e., repulsive) intermolecular potentials. For example, one 

could have 

 

A(q) = ΣI<J a/|RI- RJ|n. 

 

Such a function could, for example, be used to monitor when pairs of molecules, with 

center-of-mass coordinates RJ and RI, approach closely enough to undergo a reaction that 

requires them to surmount a high inter-molecular barrier.  

 The problem with using conventional MC methods to compute  

 

<A> = ∫ A(q) P(q) dq 

 

in such cases is that 

i. P(q) = exp(-βV(q))/ ∫exp(-βV)dq favors those coordinates for which the total potential 

energy V is low. So, coordinates with high V(q) are very infrequently accepted. 

ii. However, A(q) is designed to identify events in which pairs of molecules approach 

closely and thus have high V(q) values.  

So, there is a competition between P(q) and A(q) that renders the MC procedure 

ineffective in such cases because the average one wants to compute involves the product 

A(q) P(q) which is small for most values of q. 

 What is done to overcome this competition is to introduce a so-called umbrella 

weighting function U(q) that  

i. attains it largest values where A(q) is large, and 

ii. is positive and takes on values between 0 and 1 so it can be used as shown below to 

define a proper probability weighting function.  



 526 

One then replaces P(q) in the MC algorithm by the product P(q) U(q) and uses this as a 

weighting function. To see how this replacement works, we re-write the average that 

needs to be computed as follows: 

 

€ 

< A >= P(q)∫ A(q)dq =
exp(−βV (q))A(q)dq∫
exp(−βV (q))dq∫

 

 

€ 

=

U(q)exp(−βV (q))[A(q) /U(q)]dq∫
U(q)exp(−βV (q))dq∫

U(q)exp(−βV (q))[1/U(q)]dq∫
U(q)exp(−βV (q))dq∫

=
<
A
U

>
Ue −βV

<
1
U

>
Ue −βV

 

 

The interpretation of the last identity is that <A> can be computed by 

i. using the MC process to evaluate the average of (A(q)/U(q)) but with a probability 

weighting factor of U(q) exp(-βV(q)) to accept or reject coordinate changes, and 

ii. also using the MC process to evaluate the average of (1/U(q)) again with  

U(q) exp(-βV(q)) as the weighting factor, and finally 

iii. taking the average of (A/U) divided by the average of (1/U) to obtain the final result. 

 The secret to the success of umbrella sampling is that the product  

U(q) exp(-βV(q)) causes the MC process to emphasize in its acceptance and rejection 

procedure coordinates for which both exp(-βV) and U (and hence A) are significant. Of 

course, the tradeoff is that the quantities (A/U and 1/U) whose averages one computes 

using U(q) exp(-βV(q)) as the MC weighting function are themselves susceptible to being 

very small at coordinates q where the weighting function is large. Let’s consider some 

examples of when and how one might want to use umbrella sampling techniques.  

 Suppose one has one system for which the evaluation of the partition function 

(and thus all thermodynamic properties) can be carried out with reasonable computational 

effort and another similar system (i.e., one whose potential does not differ much from the 

first) for which this task is very difficult. Let’s call the potential function of the first 
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system V0 and that of the second system V0 + ΔV. The latter system’s partition function 

can be written as follows 

 

€ 

Q = exp(−β(V 0 + ΔV )) =
J
∑ Q0 exp(−β(V 0 + ΔV )) /Q0

J
∑

=Q0 < exp(−βΔV ) >0
 

 

where Q0 is the partition function of the first system and 

€ 

< exp(−βΔV ) >0  is the ensemble 

average of the quantity 

€ 

exp(−βΔV ) taken with respect to the ensemble appropriate to the 

first system. This result suggests that one can form the ratio of the partition functions 

(Q/Q0) by computing the ensemble average of 

€ 

exp(−βΔV )  using the first system’s 

weighting function in the MC process. Likewise, to compute, for second system, the 

average value of any property A(q) that depends only on the coordinates of the particles, 

one can proceed as follows 

 

€ 

< A >=

AJ exp(−β(V
0 + ΔV ))

J
∑

Q
=
Q0

Q
< Aexp(−βΔV ) >0  

 

 

where 

€ 

< Aexp(−βΔV ) >0 is the ensemble average of the quantity A

€ 

exp(−βΔV ) taken 

with respect to the ensemble appropriate to the first system. Using the result derived 

earlier for the ratio (Q/Q0), this expression for <A> can be rewritten as 

 

€ 

< A >=
Q0

Q
< Aexp(−βΔV ) >0=

< Aexp(−βΔV ) >0

< exp(−βΔV ) >0
. 

 

In this form, we are instructed to form the average of A for the second system by 

a. forming the ensemble average of 

€ 

Aexp(−βΔV ) using the weighting function for the 

first system,  
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b. forming the ensemble average of 

€ 

exp(−βΔV ) using the weighting function for the first 

system, and  

c. taking the ratio of these two averages.  

This is exactly what the umbrella sampling device tells us to do if we were to choose as 

the umbrella function  

 

€ 

U = exp(βΔV ) . 

 

In this example, the umbrella is related to the difference in the potential energies of the 

two systems whose relationship we wish to exploit. 

 Under what circumstances would this kind of approach be useful? Suppose one 

were interested in performing a MC average of a property for a system whose energy 

landscape V(q) has many local minima separated by large energy barriers, and suppose it 

was important to sample configurations characterizing the many local minima in the 

sampling. A straightforward MC calculation using exp(-βV) as the weighting function 

would likely fail because a sequence of coordinate displacements from near one local 

minimum to another local minimum would have very little chance of being accepted in 

the MC process because the barriers are very high. As a result, the MC average would 

likely generate configurations representative of only the system’s equilibrium existence 

near one local minimum rather than representative of its exploration of the full energy 

landscape.  

However, if one could identify those regions of coordinate space at which high 

barriers occur and construct a function ΔV that is large and positive only in those regions, 

one could then use  

 

 

€ 

U = exp(βΔV )  

 

as the umbrella function and compute averages for the system having potential V(q) in 

terms of ensemble averages for a modified system whose potential V0 is 
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€ 

V 0 =V −ΔV . 

 

In Fig. 7. 3a, I illustrate how the original and modified potential landscapes differ in 

regions between two local minima.  

 

V0

V

 
Figure 7. 3 a. Qualitative depiction of the potential V for a system having a large barrier 

and for the umbrella-modified system with potential V0 = V-ΔV. 

 

The MC-accepted coordinates generated using the modified potential V0 would sample 

the various local minima and thus the entire landscape in a much more efficient manner 

because they would not be trapped by the large energy barriers. By using these MC-

accepted coordinates, one can then estimate the average value of a property A appropriate 

to the potential V having the large barriers by making use of the identity 

 

€ 

< A >=
Q0

Q
< Aexp(−βΔV ) >0=

< Aexp(−βΔV ) >0

< exp(−βΔV ) >0
. 

 

 The above umbrella strategy could be useful in generating a good sampling of 

configurations characteristic of the many local minima, which would be especially 

beneficial if the quantity A(q) emphasized those configurations. This would be the case, 

for example, if A(q) measured the intramolecular and nearest-neighbor oxygen-hydrogen 

interatomic distances in a MC simulation of liquid water. On the other hand, if one 

wanted to use as A(q) a measure of the energy needed for a Cl- ion to undergo, in a 1 M 
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aqueous solution of NaCl, a change in coordination number from 6 to 5 as illustrated in 

Fig. 7.3 b, one would need a sampling that is accurate both near the local minima 

corresponding to the 5- and 6-coordinate and the transition-state structures.  

 

Cl-
OH2

OH2
H2O

H2O

H2O

OH2

H2O Cl-

OH2

OH2

OH2

OH2

Cl-(H2O)6

Cl-(H2O)5

TS

 
 

Figure 7.3 b Qualitative depiction of 5- and 6-coordinate Cl- ion in water and of the 

energy profile connecting these two structures. 

 

Using an umbrella function similar to that discussed earlier to simply lower the barrier 

connecting the two Cl- ion structures may not be sufficient. Although this would allow 

one to sample both local minima, its sampling of structures near the transition state would 

be questionable if the quantity ΔV by which the barrier is lowered (to allow MC steps 

moving over the barrier to be accepted with non-negligible probability) is large. In such 

cases, it is wise to employ a series of umbrellas to connect the local minima to the 

transition states.  

 Assuming that one has knowledge of the energies and local solvation geometries 

characterizing the two local minima and the transition state as well as a reasonable guess 

or approximation of the intrinsic reaction path (refer back to Section 3.3 of Chapter 3) 
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connecting these structures, one proceeds as follows to generate a series of so-called 

windows within each of which the free energy A of the solvated Cl- ion is evaluated. 

1. Using the full potential V of the system to constitute the unaltered weighting function 

exp(-βV(q)), one multiplies this by an umbrella function 

 

€ 

U(q) =
0;{s1 −δ /2 ≤ s(q) ≤ s1 + δ /2}

∞;otherwise
 

 
 

 

 
  

 

to form the umbrella-altered weighting function U(q) exp(-βV(q)). In U(q), s(q) is the 

value of the value of the intrinsic reaction coordinate IRC evaluated for the current 

geometry of the system q, s1 is the value of the IRC characterizing the first window, and δ 

is the width of this window. The first window could, for example, correspond to 

geometries near the 6-coordinate local minimum of the solvated Cl- ion structure. The 

width of each window δ should be chosen so that the energy variation within the window 

is no more than a 1-2 kT; in this way, the MC process will have a good (i.e., ca. 50%) 

acceptance fraction and the configurations generated will allow for energy fluctuations 

uphill toward the TS of about this amount. 

2. As the MC process is performed using the above U(q) exp(-βV(q)) weighting, one 

constructs a histogram P1(s) for how often the system reaches various values s along the 

IRC. Of course, the severe weighting caused by U(q) will not allow the system to realize 

any value of s outside of the window 

€ 

s1 −δ /2 ≤ s(q) ≤ s1 + δ /2 . 

3. One then creates a second window 

€ 

s2 −δ /2 ≤ s(q) ≤ s2 + δ /2  that connects to the first 

window (i.e., with s1+δ/2 = s2 - δ/2) and repeats the MC sampling using 

 

€ 

U(q) =
0;{s2 −δ /2 ≤ s(q) ≤ s2 + δ /2}

∞;otherwise
 

 
 

 

 
  

 

to generate a second histogram P2(s) for how often the system reaches various values of s 

along the IRC within the second window.  

4. This process is repeated at a series of connected windows 

€ 

sk −δ /2 ≤ s(q) ≤ sk + δ /2  
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whose centers sk range from the 6-coordinate Cl- ion (k = 1), through the transition state 

(k = TS), and to the 5-coordinate Cl- ion (k = N).  

 After performing this series of N umbrella-altered samplings, one has in hand a 

series of N histograms {Pk(s); k = 1, 2, … TS, …N}. Within the kth window, Pk(s) gives 

the relative probability of the system being at a point s along the IRC. To generate the 

normalized absolute probability function P(s) expressing the probability of being at a 

point s, one can proceed as follows: 

1. Because the first and second windows are connected at the point s1+δ/2 = s2 - δ/2, one 

can scale P2(s) (i.e., multiply it by a constant) to match P1(s) at this common point to 

produce a new

€ 

P'2 (s)  function 

 

€ 

P'2 (s) = P2(s)
P1(s1 + δ /2)
P2(s2 −δ /2)

. 

 

This new

€ 

P'2 (s)  function describes exactly the same relative probability within the 

second window, but, unlike P2(s), it connects smoothly to P1(s).  

2. Because the second and third windows are connected at the point s2+δ/2 = s3 - δ/2, one 

can scale P3(s) to match 

€ 

P'2 (s)  at this common point to produce a new

€ 

P'3 (s)  function 

 

€ 

P'3 (s) = P3(s)
P'2 (s2 + δ /2)
P3(s3 −δ /2)

. 

 

3. This process of scaling Pk to match 

€ 

P'k−1 (s) at sk – δ/2 = sk-1 + δ/2 is repeated until the 

final window connecting k = N-1 to k = N. Upon completing this series of connections, 

one has in hand a continuous probability function P(s), which can be normalized 

 

€ 

Pnormalized =
P(s)
P(s)ds

s= 0

s final∫
. 

 

In this way, one can compute the probability of accessing the TS, 

€ 

Pnormalized (s = TS) , and the free energy profile  
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€ 

A(s) = −kT lnPnormalized (s) 

 

at any point along the IRC. It is by using a series of connected windows, within each of 

which the MC process samples structures whose energies can fluctuate by 1-2 kT, that 

one generates a smooth connection from low-energy to high-energy (e.g., TS) 

geometries.  

 

 

E. Molecular Dynamics Simulations  

 

One thing that the MC process does not address directly is the time evolution of 

the system. That is, the steps one examines in the MC algorithm are not straightforward 

to associate with a time-duration, so it is not designed to compute the rates at which 

events take place. If one is interested in simulating such dynamical processes, even when 

the N-molecule system is at or near equilibrium, it is more appropriate to carry out a 

classical molecular dynamics (MD) simulation. In such an MD calculation, one has to 

assign initial values for each of the internal and external coordinates of each of the N 

molecules and an initial value of the kinetic energy or momentum for each coordinate, 

after which a time-propagation algorithm generates values for the coordinates and 

momenta at later times. For example, the initial coordinates could be chosen close to 

those of a local minimum on the energy surface and the initial momenta associated with 

each coordinate could be assigned values chosen from a Maxwell-Boltzmann distribution 

characteristic of a specified temperature T. In such cases, it is common to then allow the 

MD trajectory to be propagated for a length of time Δt long enough to allow further 

equilibration of the energy among all degrees of freedom before extracting any numerical 

data to use in evaluating average values or creating inter-particle distance histograms, for 

example.  

One usually does not choose just one set of such initial coordinates and momenta 

to generate a single trajectory. Rather, one creates an ensemble of initial coordinates and 

momenta designed to represent the experimental conditions the MD calculation is to 
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simulate. The time evolution of the system for each set of initial conditions is then 

followed using MD and various outcomes (e.g., reactive events, barrier crossings, folding 

or unfolding events, chemisorption ocurrences, etc.) are monitored throughout each MD 

simulation. An average over the ensemble of trajectories is then used in computing 

averages and creating histograms for the MD simulation. It is the purpose of this Section 

to describe how MD is used to follow the time evolution for such simulations. 

 

7.3.1 Trajectory Propagation 

With each coordinate having its initial velocity (dq/dt)0 and its initial value q0 

specified, one then uses Newton’s equations written for a time step of duration δt to 

propagate q and dq/dt forward in time according, for example , to the following first-

order propagation formula: 

 

q(t+δt) = q0 + (dq/dt)0 δt 

 

dq/dt (t+δt) = (dq/dt)0 - δt [(∂V/∂q)0/mq]. 

 

Here mq is the mass factor connecting the velocity dq/dt and the momentum pq conjugate 

to the coordinate q: 

 

pq = mq dq/dt, 

 

and -(∂V/∂q)0  is the force along the coordinate q at the earlier geometry q0. In most 

modern MD simulations, more sophisticated numerical methods can be used to propagate 

the coordinates and momenta. For example, the widely used Verlet algorithm is derived 

as follows.  

1. One expands the value of the coordinate q at the n+1st and n-1st time steps in Taylor 

series in terms of values at the nst time step  

 

€ 

qn+1 = qn + (dq /dt)nδt +
−(∂V /∂q)n

2m
δt 2 +O(δt 3) 
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€ 

qn−1 = qn − (dq /dt)nδt +
−(∂V /∂q)n

2m
δt 2 −O(δt 3)  

 

2. One adds these two expansions to obtain 

 

€ 

qn+1 = 2qn − qn−1 +
−(∂V /∂q)n

m
δt 2 +O(δt 4 )  

 

which allows one to compute qn+1 in terms of qn and qn-1 and the force at the nth step, while 

not requiring knowledge of velocities.   

3. If the two Taylor expansions are subtracted, one obtains 

€ 

(dq /dt)n+1 −
qn+1 − qn−1
2δt

+O(δt 2)  

 

as the expression for the velocity at the n+1st time step in terms of the coordinates at the 

n+1st and n-1st steps.  

There are many other such propagation schemes that can be used in MD; each has 

strengths and weaknesses. In the present Section, I will focus on describing the basic idea 

of how MD simulations are performed while leaving treatment of details about 

propagation schemes to more advanced sources such as Computer Simulations of Liquids, 

M. P. Allen and D. J. Tildesley, Oxford U. Press, New York (1997).   

The forces -(∂V/∂q) appearing in the MD propagation algorithms can be obtained 

as gradients of a Born-Oppenheimer electronic energy surface if this is computationally 

feasible. Following this path involves performing what is called direct-dynamics MD. 

Alternatively, the forces can be computed from derivatives of an empirical force field. In 

the latter case, the system's potential energy V is expressed in terms of analytical 

functions of  

i. intramolecular bond lengths, bond angles, and torsional angles, as well as  

ii. intermolecular distances and orientations. 
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The parameters appearing in such force fields have usually been determined from 

electronic structure calculations on molecular fragments, spectroscopic determination of 

vibrational force constants, and experimental measurements of intermolecular forces. 

 

7.3.2 Force Fields 

Let’s interrupt our discussion of MD propagation of coordinates and velocities to 

examine the ingredients that usually appear in the force fields mentioned above. In Fig.  

7.3 c, we see a molecule in which various intramolecular and intermolecular interactions 

are introduced.  

 

 
Figure 7. 3 c. Depiction of a molecule in which bond-stretching, bond-bending, 

intramolecular van der Waals, and intermolecular solvation potentials are illustrated.  

 

The total potential of a system containing one or more such molecules in the presence of 

a solvent (e.g., water) it typically written as a sum of intramolecular potentials (one for 

each molecule in the system) and itermolecular potentials. The former are usually 

decomposed into a sum of covalent interactions describing how the energy varies with 

bond stretching, bond bending, and dihedral angle distortion as depicted in Fig. 7.3 d. 
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Figure 7. 3 d. Depiction of bond stretching and bending (top left) and dihedral angle 

distortion (top right) within a molecule and equations describing how the energy varies 

with these geometry changes. 

 

and non-covalent interactions describing electrostatic and van der Waals interactions 

among the atoms in the molecule as  

 

€ 

Vnoncovalent = {
Ai, j

ri, j
12

i< j

atoms

∑ −
Bi, j

ri, j
6 +

qiq j

εri, j
} . 

 

These functional forms would be used to describe how the energy V(q) changes with the 

bond lengths (r) and angles (θ, φ) within, for example, each of the molecules shown in 

Fig. 7. 3 c (let’s call them solute molecules) as well as for any water molecules that may 

be present (if these molecules are explicitly included in the MD simulation).  

 The interactions among the solute and solvent moleulues are also often expressed 

in a form involving electrostatic and van der Waals interations between pairs of atoms- 

one on one molecule (solute or solvent) and the other on another molecule (solute or 

solvent).  
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€ 

Vintermolecular = {
Ai, j

ri, j
12

i< j

atoms

∑ −
Bi, j

ri, j
6 +

qiq j

εri, j
}. 

 

The Cartesian forces on any atom within a solute or solvent molecule are then computed 

for use in the MD simulation by using the chain rule to relate derivatives with respect to 

Cartesian coordinates to derivatives of the above intramolecular and intermolecular 

potentials with respect to the interatomic distances and the angles appearing in them.  

Because water is such a ubiquitous component in condensed-phase chemistry, 

much effort has been devoted to generating highly accurate intermolecular potentials to 

describe the interactions among water molecules. In the popular TIP3P and TIP4P 

models, the water-water interaction is given by 

 

€ 

V =
A
rOO
12 −

B
rOO
6 +

kqiq j

ri, ji, j
∑  

 

where rOO is the distance between the oxygen atoms of the two water molecules in Å, and 

indices i and j run over 3 or 4 sites, respectively, for TIP3P or TIP4P, with i labeling sites 

on one water molecule and j labeling sites on the second water molecule. The parameter k 

is 332.1 Å kcal mol-1. A and B are conventional Lennard-Jones parameters for oxygen 

atoms and qi is the magnitude of the partial charge on the ith site. In Fig. 7.3 d, we show 

how the 3 or 4 sites are defined for these two models. 

 

O

H H

O

H H

M

 
 

Figure 7.3 d Location of the 3 or 4 sites used in the TIP3P and TIP4P models. 

 

Typical values for the parameters are given in the table below. 
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 rOH (Å) HOH 

angle 

degrees 

rOM 

(Å) 

A 

(Å12kcal/mol) 

B 

(Å6kcal/mol) 

 

qO or 

qM 

qH 

TIP3P 0.9572 104.52  582 x103 595 -0.834 0.417 

TIP4P 0.9672 104.52 0.15 600 x103 610 -1.04 0.52 

 

In the TIP3P model, the three sites reside on the oxygen and two hydrogen centers. For 

TIP4P, the fourth site is called the M-site and it resides off the oxygen center a distance 

of 0.15 along the bisector of the two O-H bonds as shown in Fig. 7.3 d.  In using either 

the TIP3P or TIP4P model, the intramolecular bond lengths and angles are often 

constrained to remain fixed; when doing so, one is said to be using a rigid water model. 

There are variants to these two 3-site and 4-site models that, for example, include 

van der Waals interactions between H atoms on different water molecules, and there are 

models including more than 4 sites, and models that allow for the polarization of each 

water molecule induced by the dipole fields (as represented by the partial charges) of the 

other water molecules and of solute molecules.  The more detail and complexity one 

introduces, the more computational effort is needed to perform MD simulations. In 

particular, water molecules that allow for polarization are considerably more 

computationally demanding because they often involve solving self-consistently for the 

polarization of each molecule by the charge and dipole potentials of all the other 

molecules, with each dipole potential including both the permanent and induced dipoles 

of that molecule. Professor John Wampler has created a web page 

(http://www.bmb.uga.edu/wampler/399/lectures/mm1/index.htm) in which the details 

about molecular mechanics force fields introduced above are summarized. The web page 

(http://en.wikipedia.org/wiki/Molecular_mechanics) provides links to numerous software 

packages that use these kinds of force fields to carry out MD simulations. These links 

also offer more detailed information about the performance of various force fields as well 

as giving values for the parameters used in those force fields.  

The parameter values are usually obtained by  

a. fitting the intramolecular or intermolecular functional form (e.g., as shown above) to 

energies obtained in electronic structure calculations at a large number of geometries, or 
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b. adjusting them to cause MD or MC simulations employing the force field to reproduce 

certain thermodynamic properties (e.g., radial distribution functions, solvation energies, 

vaporization energies, diffusion constants), or some combination of both. It is important 

to observe that the kind of force fields discussed above have limitations beyond issues of 

accuracy. In particular, they are not designed to allow for bond breaking and bond 

forming, and they represent the Born-Oppenheimer energy of one (most often the 

ground) electronic state. There are force fields explicitly designed to include chemical 

bonding changes, but most MD packages do not include them. When one is interested in 

treating a problem that involves transitions from one electronic state to another (e.g., in 

spectroscopy or when the system undergoes a surface hop near a conical intersection), it 

is most common to use a combined QM-MM approach like we talked about in Section 

6.1.3 of Chapter 6. A QM treatment of the portion of the system that undergoes the 

electronic transition is combined with a force-field (MM) treatment of the rest of the 

system to carry out the MD simulation. Let’s now return to the issue of propagating 

trajectories given a force field and a set of initial conditions appropriate to describing the 

system to be simulated. 

By applying one of the time-propagation algorithms to all of the coordinates and 

momenta of the N molecules at time t, one generates a set of new coordinates q(t+δt) and 

new velocities dq/dt(t+δt) appropriate to the system at time t+δt. Using these new 

coordinates and momenta as q0 and (dq/dt)0  and evaluating the forces –(∂V/∂q)0  at these 

new coordinates, one can again use the propagation equations to generate another finite-

time-step set of new coordinates and velocities. Through the sequential application of this 

process, one generates a sequence of coordinates and velocities that simulate the system’s 

behavior. By following these coordinates and momenta, one can interrogate any 

dynamical properties that one is interested in. For example, one could monitor oxygen-

oxygen distances throughout an MD simulation of liquid water with initial conditions 

chosen to represent water at a given temperature (T would determine the initial momenta) 

to generate a histogram of O-O distances. This would allow one to construct the kind of 

radial distribution function shown in Fig. 7. 3 using MD simulation rather than MC. The 

radial distribution function obtained in such an MD simulation should be identical to that 

obtained from MC because statistical mechanics assumes the ensemble average (MC) is 
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equal to the long-time average (MD) of any property for a system at equilibrium. Of 

course, one could also monitor quantities that depend on time, such as how often two 

oxygen atoms come within a certain distance, throughout the MD simulation. This kind 

of interrogation could not be achieved using MC because there is no sense of time in MC 

simulations. 

In Chapter 8, I again discuss using classical molecular dynamics to follow the 

time evolution of a chemical system. However, there is a fundamental difference between 

the kind of simulations described above and the case I treat in Chapter 8. In the former, 

one allows the N-molecule system to reach equilibrium (i.e., either by carefully choosing 

initial coordinates and momenta or by waiting until the dynamics has randomized the 

energy) before monitoring the subsequent time evolution. In the problem discussed in 

Chapter 8, we use MD to follow the time progress of a system representing a single 

bimolecular collision in two crossed beams of molecules. Each such beam contains 

molecules whose initial translational velocities are narrowly defined rather than Maxwell-

Boltzmann distributed. In this case, we do not allow the system to equilibrate because we 

are not trying to model an equilibrium system. Instead, we select an ensemble of initial 

conditions that represent the molecules in the two beams and we then follow the Newton 

dynamics to monitor the outcome (e.g., reaction or non-reactive collision).  

Unlike the MC method, which is very amenable to parallel computation, MD 

simulations are more difficult to carry out in a parallel manner. One can certainly execute 

many different classical trajectories on many different computer nodes; however, to 

distribute one trajectory over many nodes is difficult. The primary difficulty is that, for 

each time step, all N of the molecules undergo moves to new coordinates and momenta. 

To compute the forces on all N molecules requires of the order of N2 calculations (e.g., 

when pairwise additive potentials are used). In contrast, each MC step requires that one 

evaluate the potential energy change accompanying the displacement of only one 

molecule. This uses only of the order of N computational steps (again, for pair wise 

additive potentials).  

Another factor that complicates MD simulations has to do with the wide range of 

times scales that may be involved. For example, for one to use a time step δt short 

enough to follow high-frequency motions (e.g., O-H stretching) in a simulation of an ion 
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or polymer in water solvent, δt must be of the order of 10-15 s. To then simulate the 

diffusion of an ion or the folding of a polymer in the liquid state, which might require 10-4 

s or longer, one would have to carry out 1011 MD steps. This likely would render the 

simulation not feasible. In the table below we illustrate the wide range of time scales that 

characterize various events that one might want to simulate using some form of MD, and 

we give a sense of what is practical using MD simulations in the year 2010.  

 

Examples of dynamical processes taking place over timescales ranging from 10-15 s 

through hundreds of seconds, each of which one may wish to simulate using MD.  

10-15 -10-14 s 10-12 s 10-9 s 10-6 s 10-3 s 110 s 

C-H, N-H, 

O-H bond 

vibration 

Rotation of 

small 

molecule 

Routinely 

accessible 

time 

duration for 

atomistic 

MD 

simulation 

Time 

duration for 

heroic 

atomistic 

MD 

simulation 

Time 

duration 

achievable 

using 

coarse-

graining 

techniquesa 

Time needed 

for protein 

folding 

a. These techniques are discussed in Section 7.3.3.  

 

Because one can not afford to carry out simulations covering 10-3 -100 s using 

time steps needed to follow bond vibrations 10-15 s, it is necessary to devise strategies to 

focus on motions whose time frame is of primary interest while ignoring or 

approximating faster motions. For example, when carrying out long-time MD 

simulations, one can ignore the high-frequency intramolecular motions by simply not 

including these coordinates and momenta in the Netwonian dynamics (e.g., as one does 

when using a rigid-water model discussed earlier). In other words, one simply freezes 

certain bond lengths and angles. Of course, this is an approximation whose consequences 

must be tested and justified, and would certainly not be a wise step to take if those 

coordinates played a key role in the dynamical process being simulated.  Another 

approach, called coarse graining involves replacing the fully atomistic description of 
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selected components of the system by a much-simplified description involving 

significantly fewer spatial coordinates and momenta.  

 

7.3.3 Coarse Graining 
 

 The goal of coarse graining is to bring the computational cost of a simulation into 

the realm of reality. This is done by replacing the fully atomistic description of the 

system, in which coordinates sufficient to specify the positions (and, in MD, the 

velocities) of every atom, by a description in terms of fewer functional groups often 

referred to as “beads”. The TIP4P and TIP3P models for the water-water interaction 

potential discussed above are not coarse-grained models because they contain as many 

(or more) centers as atoms. An example of a coarse-grained model for the water-water 

interaction is provided by the Stillinger-Weber model (that was originally introduced to 

treat tetrahedral Si) of water introduced in V. Molinero and E. B. Moore, J. Phys. Chem. 

B 2009, 113, 4008–4016. Here, each water molecule is described only by the location of 

its oxygen nucleus (labeled ri for the ith water molecule), and the interaction potential is 

given as a sum of two-body and three-body terms 

 

€ 

V = Aε{B σ
ri, j

 

 
  

 

 
  

i< j=1

N

∑
p

−
σ
ri, j

 

 
  

 

 
  

q

}exp( σ
ri, j − aσ

)

+ λε[cosθi, j,k − cosθ0]
2 exp( γσ

ri, j − aσ
)exp( γσ

ri,k − aσ
)

i< j<k=1

N

∑

 

 

where ri,j is the distance between the ith and jth oxygen atom, θ0 = 109.47 deg, and θi,j,k is 

the angle between the ith (at the center), jth, and kth oxygen atom. The parameters A, B, ε, 

σ, and a are used to characterize various characteristics of the potential; different values 

are needed to describe the behavior of Si, Ge, diamond, or water even though they all can 

adopt tetrahedral coordination. The form of the three-body part of this potential is 

designed to guide the orientations among oxygen atoms to adopt tetrahedral character.  
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 Although the above potential seems more complicated than, for example, the form 

used in the TIP3P or TIP4P potential, it has three important advantages when it comes to 

carrying out MD simulations: 

1. Because the SW potential contains no terms varying with distance as r-1 (i.e., no 

Coulomb interactions among partial charges), it is of qualitatively shorter range than the 

other two potentials. This allows spatial cut-offs to be used (i.e., to ignore interactions 

beyond much shorter distances) efficiently. 

2. For a system containing N water molecules, the TIP3P or TIP4P models require one to 

evaluate functions of the distances between (3N)2/2 or (4N)2/2 centers, whereas the SW’s 

two-body component involves only N2/2 interactions and the three-body component need 

only be evaluated for molecules j and k that are nearby molecule i.  

3. If, for the atomistic models, one wishes to treat the O-H stretching and H-O-H bending 

motions, MD time steps of ca. 10-15 s must be employed. For the SW model, the fastest 

motions involve relative movements of the oxygen centers, which occur on time scales 

ca. 10 times longer. This means that one can use longer MD steps. 

The net result is that this coarse-grained model of the water-water interaction allows MD 

simulations to be carried out for qualitatively longer time durations. Of course, this is 

only an advantage if the simulations provide accurate results. In the Table shown below 

(taken from the above reference), we see MD simulation results (as well as experimental 

results) obtained with the above (mW) model, with various TIPnP models, and with two 

other popular water-water potentials (SPC and SPCE) from which it is clear that the 

coarse-grained mW model is capable of yielding reliable results on a range of 

thermodynamic properties. 
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 Another example of taking a coarse-grained approach to greatly simplify MD 

simulations is provided in the work T. A. Knotts, IV, N. Rathore, D. C. Schwartz, and J. 

J. de Pablo, J. Chem. Phys. 126, 084901 (2007). In Fig. 7.3 e, we see a coarse-grained 

representation of the DNA double helix (taken from this reference) as well as a depiction 

of how the beads are defined in terms of base, sugar, and phosphate units. 
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Figure 7.3 e Depiction of cytosine base, sugar, and phosphate units constituting 

blue, yellow, and brown beads, respectively (a); bead description of the double helix (d); 

locations of the beads relative to the atomic positions for the phosphate, sugar, and bases; 

and definition of various bead-bead interaction distances (c). 

 

 In the Table shown below, the reference cited above specifies the locations and 

masses of the phosphate, sugar, and base beads in the B form of the DNA helix. The 

masses need to be chosen so that the coarse-grained dynamical motions of these units 

replicate within reasonable tolerances the center of mass motions of the phosphate, sugar, 

and base moieties when atomistic MD simulations are carried out on smaller test systems 

containing these nucleotide units.  
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 The potential V used to carry out the coarse-grained MD simulations is given by 

the equations shown below taken from the above reference. In addition to the usual bond 

stretching, bending and dihedral terms (n.b., now the bonds relate to linkages between 

beads rather than between atoms) that are similar to what we saw earlier in our discussion 

of force fields, there are additional terms.  

1. Vstack describes the interactions among π-stacked base pairs,   

2. Vbp describes the hydrogen bonding interactions between bases, and 

3. Vex describes excluded-volume effects.  

4. Vqq is the screened Coulombic interactions among phosphate units, with its exponential 

decay constant κD given in terms of a so-called Debye screening length as detailed in the 

above reference. 
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The values of the parameters used in this force field potential given in the above 

reference are reproduced in the two Tables shown below. 
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Although there are numerous parameters in this potential, the key to the success 

of this coarse graining is that there are only six kinds of sites whose positions and 

velocities must be propagated in the MD simulation- phosphate sites, sugar sites, and four 

kinds of base sites. This is far fewer coordinates that would arise in a fully atomistic MD 

simulation. I will refer the reader to the reference cited above for details about how 

successful coarse graining was in this case, but I will not go further into it at this time. I 

think the two examples we discussed in this Section suffice for introducing the subject of 

coarse graining to the readers of this text.  

In summary for this Section, MD classical simulations are not difficult to 

implement if one has available a proper representation of the intramolecular and 

intermolecular potential energy V. Such calculations are routinely carried out on large 

bio-molecules or condensed-media systems containing thousands to millions of atomic 

centers. There are, however, difficulties primarily connected to the time scales over 

which molecular motions and over which the process being simulated change that limit 

the success of this method and which often require one to employ reduced representations 

of the system such as in coarse graining. In contrast, quantum MD simulations such as we 

describe in the following Section are considerably more difficult to carry out.  

 

7.4 Time Correlation Functions 

One of the most active research areas in statistical mechanics involves the 

evaluation of so-called equilibrium time correlation functions such as we encountered in 

Chapter 6.  The correlation function C(t) is defined in terms of two physical operators A 

and B, a time dependence that is carried by a Hamiltonian H via exp(-iHt/ h), and an 

equilibrium average over a Boltzmann population exp(-βH)/Q.  

The quantum mechanical expression for C(t) is 

 

C(t) = Σj <Φj | A exp(iHt/ h) B exp(-iHt/ h) |Φj > exp(-βEj)/Q, 

  

while the classical mechanical expression (here, we allow the h-M factor that occurs in the 

partition function shown in Section 7.1.2 to be cancelled out in the numerator and 

denominator for simplicity) is 
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C(t) = ∫ dq(0) ∫ dp(0) A(q(0),p(0)) B(q(t),p(t)) exp(-βH(q(0),p(0)))/Q, 

  

where q(0) and p(0) are the values of all the coordinates and momenta of the system at 

t=0 and q(t) and p(t) are their values, according to Newtonian mechanics, at time t. 

As shown above, an example of a time correlation function that relates to molecular 

spectroscopy is the dipole-dipole correlation function that we discussed in Chapter 6: 

 

C(t) = Σj <Φj | e•µ  exp(iHt/ h) e•µ  exp(-iHt/ h) |Φj > exp(-βEj)/Q, 

  

for which A and B are both the electric dipole interaction e•µ  between the photon's 

electric field whose direction is characterized by the vector e and the molecule's dipole 

operator µ . The Fourier transform of this particular C(t) relates to the absorption intensity 

for light of frequency ω: 

 

I(ω) = ∫ dt C(t) exp(iωt). 

  

It turns out that many physical properties (e.g., absorption line shapes, Raman scattering 

intensities) and transport coefficients (e.g., diffusion coefficients, viscosity) can be 

expressed in terms of time-correlation functions. It is beyond the scope of this text to go 

much further in this direction, so I will limit my discussion to the optical spectroscopy 

case at hand, which requires that we now discuss how the time-evolution aspect of this 

problem is dealt with. The text Statistical Mechanics, D. A. McQuarrie, Harper and Row, 

New York (1977) has a nice treatment of such other correlation functions, so the reader is 

directed to that text for further details.  

The computation of correlation functions involves propagating either wave 

functions or classical trajectories which produce the q(t), p(t) values entering into the 

expression for C(t). In the classical case, one carries out a large number of Newtonian 

trajectories with initial coordinates q(0) and momenta p(0) chosen to represent the 

equilibrium condition of the N-molecule system. For example, one could use the MC 

method to select these variables employing exp(-βH(p(0),q(0))) as the probability 
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function for accepting or rejecting initial q(0) and p(0) values. In this case, the weighting 

function contains not just the potential energy but also the kinetic energy (and thus the 

total Hamiltonian H) because now we need to also select proper initial values for the 

momenta. So, with many (e.g., M) selections of the initial q and p variables of the N-

molecules being made, one would allow the Newton dynamics of each set of initial 

conditions to proceed. During each such trajectory, one would monitor the initial value of 

the A(q(0), p(0)) property and the time progress of the B(q(t),p(t)) property. One would 

then compute the MC average to obtain the correlation function: 

 

C(t) = (1/M) ΣJ=1,M A(qJ(0),pJ(0)) B(qJ(t),pJ(t)) exp(-βH(qJ(0),pJ(0))). 

 

Where the index J labels the M accepted configurations and momenta of the MC 

sampling.  

In the quantum case, the time propagation is especially challenging and is 

somewhat beyond the scope of this text. However, I want to give you some idea of the 

steps that are involved, realizing that this remains an area of very active research 

development. As noted in Section 1.3.6, it is possible to time-propagate a wave function 

Φ that is known at t = 0 if one is able to expand Φ in terms of the eigenfunctions of the 

Hamiltonian H.  However, for systems comprised of many molecules, which are most 

common in statistical mechanics studies, it is impossible to compute (or realistically 

approximate) these eigenfunctions. Thus, it is not productive to try to express C(t) in 

terms of these eigenfunctions. Therefore, an entirely new set of tools has been introduced 

to handle time-propagation in the quantum case, and it is these new devices that I now 

attempt to describe in a manner much like we saw in Section 1.3.6’s discussion of time 

propagation of wave functions. 

To illustrate, consider the time propagation issue contained in the quantum 

definition of C(t) shown above. One is faced with 

1. propagating |Φj > from t=0 up to time t, using exp(-iHt/ h) |Φj > and then acting with 

the operator B 

2. acting with the operator A+ on |Φj> and then propagating A+ |Φj > from t=0 up to time 

t, using exp(-iHt/ h)A+ |Φj >; 
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3. C(t) then requires that these two time-propagated functions be multiplied together and 

integrated over the coordinates that Φ depends on. 

The exp(-βH) operator that also appears in the definition of C(t) can be combined, 

for example, with the first time propagation step and actually handled as part of the time 

propagation as follows: 

 

exp(-iHt/ h) |Φj > exp(-βEj) = exp(-iHt/ h) exp(-βH) |Φj > 

  

=exp(-i[t+β h /i]H/ h) |Φj>. 

  

The latter expression can be viewed as involving a propagation in complex time from t = 

0  to t = t + β  h /i. Although having a complex time may seem unusual, as I will soon 

point out, it turns out that it can have a stabilizing influence on the success of these tools 

for computing quantum correlation functions. 

Much like we saw earlier in Section 1.3.6, so-called Feynman path integral 

techniques can be used to carry out the above time propagations. One begins by dividing 

the time interval into P discrete steps (this can be the real time interval or the complex 

interval) 

 

exp[-i Ht/ h] = {exp[-i Hδt/ h ]}P . 

 

The number P will eventually be taken to be large, so each time step δt = t/P has a small 

magnitude. This fact allows us to use approximations to the exponential operator 

appearing in the propagator that are valid only for short time steps. For each of these 

short time steps one then approximates the propagator in the most commonly used so-

called split symmetric form: 

 

exp[-i Hδt/ h] = exp[-i Vδt/2 h] exp[-i Tδt/ h] exp[-i Vδt/2 h]. 

  

Here, V and T are the potential and kinetic energy operators that appear in H = T + V. It 

is possible to show that the above approximation is valid up to terms of order (δt)4. So, 
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for short times (i.e., small δt ), these symmetric split operator approximation to the 

propagator should be accurate. 

The time evolved wave function Φ(t) can then be expressed as 

 

Φ(t) = { exp[-i Vδt/2 h] exp[-i Tδt/ h] exp[-i Vδt/2 h]}P Φ(t=0). 

  

The potential V is (except when external magnetic fields are present) a function only of 

the coordinates {qj } of the system, while the kinetic term T is a function of the momenta 

{pj } (assuming Cartesian coordinates are used). By making use of the completeness 

relations for eigenstates of the coordinate operator 

 

1 = ∫  dq  | qj> < qj| 

 

and inserting this identity P times (once between each combination of  

exp[-i Vδt/2h] exp[-i Tδt/h] exp[-i Vδt/2h] factors), the expression given above for Φ(t) 

can be rewritten as follows: 

 

Φ(qP ,t)= ∫ dqP-1  dqP-2 . . . dq1 dq0  Πj=1,P exp{(-iδt/2 h)[V(qj) + V(qj-1)]} 

 

< qj| exp(-iδtT / h ) |qj-1>Φ(q0,0). 

 

Then, by using the analogous completeness identity for the momentum operator 

 

1 = (1/ h) ∫ dpj| pj>< pj | 

 

one can write 

 

< qj| exp(-iδtT / h ) |qj-1> = (1/ h) ∫ dp < qj|p > exp(-ip2δt /2m h ) < p|qj-1 >. 

 

Finally, by using the fact (recall this from Section 1.3.6) that the momentum 

eigenfunctions |p>, when expressed as functions of coordinates q are given by 
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< qj|p > = (1/2π)1/2 exp(ipq/ h), 

  

the above integral becomes 

 

< qj | exp(-iδtT / h) |qj-1> = (1/2π h) ∫ dp exp(-ip2 δt /2m h) exp[ip(qj - qj - 1)/h]. 

  

This integral over p can be carried out analytically to give 

 

< qj | exp(-iδtT / h) |qj-1> = (m/2πih δt)1/2 exp[im(qj - qj - 1)2 /2 h δt]. 

  

When substituted back into the multidimensional integral for Φ(qP ,t), we obtain 

 

Φ(qP ,t)= (m/2πih δt)P/2 ∫ dqP-1 dqP-2 . . . dq1 dq0  Πj=1,P exp{(-iδt/2 h)[V(qj) + V(qj-1)]} 

  

exp[im(qj - qj-1)2 /2 h δt] Φ (q0,0) 

    

or 

 

Φ(qP ,t)= (m/2πih δt)P/2 ∫ dqP-1 dqP-2 . . . dq1 dq0  exp{Σj=1,P [ (-iδt/2 h)[V(qj) + V(qj-1)] 

  

+ ( i m(qj - qj-1)2 /2 h δt)]} Φ (q0,0). 

 

 Recall what we said earlier that the time correlation function was to be computed 

by: 

1. propagating |Φj > from t=0 up to time t, using exp(-iHt/ h) |Φj > and then acting with 

the operator B 

2. acting with the operator A+ on |Φj> and then propagating A+ |Φj > from t=0 up to time 

t, using exp(-iHt/ h)A+ |Φj >; 

3. multiplying together these two functions and integrating over the coordinates that Φ 

depends on. 
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So all of the effort described above would have to be expended for Φ (q0,0) taken to be 

|Φj > after which the result would be multiplied by the operator B, as well as for Φ (q0,0) 

taken to be A+|Φj > to allow the quantum time correlation function C(t) to be evaluated. 

These steps can be performed, but they are very difficult to implement, so I will refer the 

student to Computer Simulations of Liquids, M. P. Allen and D. J. Tildesley, Oxford U. 

Press, New York (1997) for further discussion on this topic.  

Why are the multidimensional integrals of the form shown above called path 

integrals? Because the sequence of positions q1 , ... qP-1 describes a path connecting q0 to 

qP . By integrating over all of the intermediate positions q1 , q2 ,... qP-1 for any given q0  

and qP one is integrating over all paths that connect q0 to qP. Further insight into the 

meaning of the above is gained by first realizing that 

 

(m/2δt) (qj - qj-1)2 =(m/2(δt)2)  (qj - qj-1)2 δt = ∫ T dt 

 

is the finite-difference representation, within the P discrete time steps of length δt, of the 

integral of Tdt over the jth time step, and that 

 

(δt/2) [V(qj) + V(qj-1)] = ∫V(q)dt 

 

is the representation of the integral of Vdt over the jth time step. So, for any particular 

path (i.e., any specific set of q0 , q1, , ... qP-1 , qP values), the sum over all such terms  

Σj=1,P-1  [m(qj - qj-1)2 / 2δt - δt(V(qj) + V(qj-1))/2] represents the integral over all time from 

t=0 until t = t of the so-called Lagrangian L = T - V: 

 

Σj=1,P-1 [m(qj - qj-1)2 / 2δt - δt(V(qj) + V(qj-1))/2] = ∫ Ldt. 

  

This time integral of the Lagrangian is called the action S in classical mechanics (recall 

that in Chapter 1, we used quantization of the action in the particle-in-a-box problem). 

Hence, the N-dimensional integral in terms of which Φ(qP ,t) is expressed can be written 

as 
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Φ (qP ,t) = (m/2πih δt)P/2  Σall paths exp{i / h ∫ dt L } Φ (q0 ,t=0). 

 

Here, the notation "all paths" is realized in the earlier version of this equation by dividing 

the time axis from t = 0 to t = t into P equal divisions, and denoting the coordinates of the 

system at the jth time step by qj . By then allowing each qj to assume all possible values 

(i.e., integrating over all possible values of qj using, for example, the Monte-Carlo 

method discussed earlier), one visits all possible paths that begin at q0 at t = 0 and end at 

qP at t = t. By forming the classical action S 

 

S = ∫ dtL 

 

for each path and then summing exp(iS/ h) Φ( q0 ,t=0) over all paths and multiplying by 

(m/2π h δt)P/2, one is able to form Φ(qP ,t).  

The difficult step in implementing this Feynman path integral method in practice 

involves how one identifies all paths connecting q0 , t = 0 to qP , t. Each path contributes 

an additive term involving the complex exponential of the quantity 

 

Σj=1,P-1 [m(qj - qj-1)2 / 2δt - δt(V(qj) + V(qj-1))/2] 

 

Because the time variable δt =t/P appearing in each action component can be complex 

(recall that, in one of the time evolutions, t is really t + β h /i ), the exponentials of these 

action components can have both real and imaginary parts. The real parts, which arise 

from the exp(-βH), cause the exponential terms to be damped (i.e., to undergo 

exponential decay), but the imaginary parts give rise (in exp(iS/ h)) to oscillations. The 

sum of many, many (actually, an infinite number of) oscillatory exp(iS/ h) = cos (S/ h) + i 

sin(S/ h) terms is extremely difficult to evaluate because of the tendency of contributions 

from one path to cancel those of another path. The practical evaluation of such sums 

remains a very active research subject.  

The most commonly employed approximation to this sum involves finding the 

path(s) for which the action 
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S= Σj=1,P-1 [m(qj - qj-1)2 / 2δt - δt(V(qj) + V(qj-1))/2] 

 

is smallest because such paths produce the lowest-frequency oscillations in exp(iS/ h), 

and thus may be less subject to cancellation by contributions from other paths. 

The path(s) that minimize the action S are, in fact, the classical paths. That is, they are the 

paths that the system whose quantum wave function is being propagated would follow if 

the system were undergoing classical Newtonian mechanics subject to the conditions that 

the system be at q0 at t=0 and at qP at t=t.  In this so-called semi-classical approximation 

to the propagation of the initial wave function using Feynman path integrals, one finds all 

classical paths that connect q0 at t = 0 and at qP at t = t, and one evaluates the action S for 

each such path. One then applies the formula 

 

Φ(qP ,t) =  (m/2πih δt)P/2 Σall paths exp{i / h  ∫ dt L } Φ (q0 ,t=0) 

  

but includes in the sum only the contribution from the classical path(s). In this way, one 

obtains an approximate quantum propagated wave function via a procedure that requires 

knowledge of only classical propagation paths. 

 Clearly, the quantum propagation of wave functions, even within the semi-

classical approximation discussed above, is a rather complicated affair. However, keep in 

mind the alternative that one would face in evaluating, for example, spectroscopic line 

shapes if one adopted a time-independent approach. One would have to know the 

energies and wave functions of a system comprised of many interacting molecules. This 

knowledge is simply not accessible for any but the simplest molecules. For this reason, 

the time-dependent framework in which one propagates classical trajectories or uses 

path-integral techniques to propagate initial wave functions offers the most feasible way 

to evaluate the correlation functions that ultimately produce spectral line shapes and other 

time correlation functions for complex molecules in condensed media. 

 Before finishing this Section, it might help if I showed how one obtains the result 

that classical paths are those that make the action integral S = ∫ Ldt minimum. This 

provides the student with an introduction to the subject called calculus of variations or 

functional analysis, which most students reading this text have probably not studied in a 
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class. First, let’s clarify what a functional is. A function f(x) depends on one or more 

variables x that take on scalar values; that is, given a scalar number x, f(x) produces the 

value of the function f at this value of x. A functional F[f] is a function of the function f 

if, given the function f, F acts on it to produce a value. In more general functionals, F[f] 

might depend not only of f, but on various derivatives of f. Let’s consider an example. 

Suppose one has a functional of the form 

 

€ 

F[ f ] = F(t, f (t), df (t)
dt

)dt
t0

t f

∫  

 

meaning that the functional involves an integral from t0 through tf of an integrand that 

may contain (i) the variable t explicitly, (ii) the function f(t), and (iii) the derivative of 

this function with respect to the variable t. This is the kind of integral one encounters 

when evaluating the action integral 

 

€ 

S = [T −V ]dt = [m
2t0

t f

∫
t0

t f

∫ (dx(t)
dt

)2 −V (x(t))]dt  

 

where the function f(t) is the coordinate x(t) that evolves from x(t0) to x(tf). The task at 

hand is to determine that function x(t) for which this integral is a minimum.  

 We solve this problem proceeding much as one would do if one had to minimize a 

function of a variable; we differentiate with respect to the variable and set the derivative 

to zero. However, in our case, we have a function of a function, not a function of a 

variable; so how do we carry out the derivative? We assume that the function x(t) that 

minimizes S is known, and we express any function that differs a little bit from the 

correct x(t) as  

 

€ 

x(t) + εη(t) 

 

where 

€ 

ε is a scalar quantity used to suggest that x(t) and 

€ 

x(t) + εη(t) differ by only a 

small amount and 

€ 

η(t)  is a function that obeys 
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€ 

η(t)  = 0 at t=t0 and at t = tf; 

 

this is how we guarantee that we are only considering paths that connect to the proper x0 

at t0 and xf at tf. By considering all possible functions 

€ 

η(t) that obey these conditions, we 

have in 

€ 

x(t) + εη(t) a parameterization of all paths that begin (at t0) and end (at tf) where 

the exact path x(t) does but differ by a small amount from x(t). Substituting 

€ 

x(t) + εη(t) 

into  

 

€ 

S = [m
2
(dx(t)
dt

)2 −V (x(t))]dt
t0

t f

∫  

 

gives 

 

€ 

S = [m
2
{dx(t)
dt

+ ε
dη(t)
dt

}2 −V{x(t))+ εη(t)}]dt
t0

t f

∫ . 

 

The terms in the integrand are then expanded in powers of the ε parameter 

 

€ 

{dx(t)
dt

+ ε
dη(t)
dt

}2 =
dx(t)
dt

+ 2ε dx(t)
dt

dη(t)
dt

+ ε2[dη
dt
]2  

 

€ 

−V (x(t) + εη(t)) = −V (x(t)) −ε∂V (x(t))
∂x(t)

η(t) −1/2ε2 ∂
2V (x(t))
∂x(t)2

η2(t) − ... 

 

and substituted into the integral for S. Collecting terms of each power of ε allows this 

integral to be written as  

 

€ 

S(ε) = [m
2
{ dx(t)

dt
 

 
 

 

 
 
2

+ 2ε dx(t)
dt

dη(t)
dt

+O(ε2)}−V (x(t)) −ε∂V (x(t))
∂x(t)

η(t) −O(ε2)]dt
t0

t f

∫ . 
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The condition that S(ε) be stable with respect to variations in ε can be expressed as 

 

€ 

dS(ε)
dε

= 0 = limε→0
S(ε) − S(0)

ε
 

 

which is equivalent to requiring that the terms linear in ε in the above expansion for S(ε) 

vanish 

 

€ 

0 = [m dx(t)
dt

dη(t)
dt

−
∂V (x(t))
∂x(t)

η(t)]dt
t0

t f

∫  

 

Next, we use integration by parts to rewrite the first term involving 

€ 

dη(t)
dt

 as a term 

involving 

€ 

η(t)  instead 

 

€ 

m dx(t)
dt

dη(t)
dt

dt
t0

t f

∫ = m dx(t)
dt

η(t)
 

  
 

  t0

t f

− m d2x(t)
dt 2

η(t)dt
t0

t f

∫  

 

Because the function 

€ 

η(t)vanishes at t0 and tf, the first term vanishes, so this identity can 

be used to rewrite the condition that the terms in S(ε) that are linear in ε vanish as 

 

€ 

0 = [−m d2x(t)
dt 2

−
∂V (x(t))
∂x(t)

]η(t)dt
t0

t f

∫ . 

 

Because this result is supposed to be valid for any function 

€ 

η(t)  that vanishes at t0 and tf, 

the factor multiplying 

€ 

η(t)  in the above integral must itself vanish 

 

€ 

−m d2x(t)
dt 2

−
∂V (x(t))
∂x(t)

= 0. 
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This shows that the path x(t) that makes S stationary is the path that obeys Newton’s 

equations- the classical path. I urge the student reader to study this example of the use of 

functional analysis because this mathematical device is an important tool too master. 

 

7.5 Some Important Chemical Applications of Statistical Mechanics 

 In this Section, I introduce several applications of statistical mechanics that are 

important for students to be aware of because they arise frequently when chemists make 

use of the tools of statistical mechanics. These examples include 

1. The basic equations connecting the translational, rotational, vibrational, and electronic 

properties of isolated (i.e., gas-phase) molecules to their thermodynamics.  

2. The most basic descriptions of the vibrations of ions, atoms, or molecules within 

crystals. 

3. The most elementary models for describing cooperative behavior and phase transitions 

in gas-surface and liquid-liquid systems. 

4. The contributions of intermolecular forces to the thermodynamics of gases.  

 

7.5.1 Gas-Molecule Thermodynamics 

 The equations relating the thermodynamic variables to the molecular partition 

functions can be employed to obtain the following expressions for the energy E, heat 

capacity CV, Helmholz free energy A, entropy S, and chemical potential µ in the case of a 

gas (i.e., in the absence of intermolecular interactions) of polyatomic molecules: 

  

E/NkT = 3/2 + 3/2 + ΣJ=1,3N-6 [hνJ/2kT + hνJ/kT (exp(hνJ/kT)-1)-1 ] – De/kT, 

 

CV/Nk = 3/2 + 3/2 + ΣJ=1,3N-6 (hνJ/kT)2 exp(hνJ/kT) (exp(hνJ/kT)-1)-2 , 

 

-A/NkT = ln {[2πmkT/h2]3/2 (Ve/N)} + ln[(π1/2/σ) (8π2IAkT/h2)1/2  (8π2IBkT/h2)1/2 

 

(8π2ICkT/h2)1/2]  - ΣJ=1,3N-6 [hνJ/2kT + ln(1-exp(-hνJ/kT))] + De/kT + lnωe 

 

S/Nk = ln {[2πmkT/h2]3/2 (Ve5/2/N)} + ln [(π1/2/σ) (8π2IAkT/h2)1/2  (8π2IBkT/h2)1/2 
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(8π2ICkT/h2)1/2] + ΣJ=1,3N-6 [hνJ/kT (exp(hνJ/kT)-1)-1 – ln(1-exp(-hνϑ/kT))] + lnωe 

 

µ/kT = - ln {[2πmkT/h2]3/2 (kT/p)} - ln[(π1/2/σ) (8π2IAkT/h2)1/2  (8π2IBkT/h2)1/2 

 

(8π2ICkT/h2)1/2]  + ΣJ=1,3N-6 [hνJ/2kT + ln(1-exp(-hνJ/kT))] - De/kT - lnωe. 

 

Earlier in this Chapter in Section 7.1.2, we showed how these equations are derived, so I 

refer the reader back to that treatment for further details. 

Notice that, except for the chemical potential µ, all of these quantities are 

extensive properties that depend linearly on the number of molecules in the system N. 

Except for the chemical potential µ and the pressure p, all of the variables appearing in 

these expressions have been defined earlier when we showed the explicit expressions for 

the translational, vibrational, rotational, and electronic partition functions. These are the 

working equations that allow one to compute thermodynamic properties of stable 

molecules, ions, and even reactive species such as radicals in terms of molecular 

properties such as geometries, vibrational frequencies, electronic state energies and 

degeneracies, and the temperature, pressure, and volume.  

 

7.5.2 Einstein and Debye Models of Solids 

 These two models deal with the vibrations of crystals that involve motions among 

the neighboring atoms, ions, or molecules that comprise the crystal. These inter-fragment 

vibrations are called phonons. In the Einstein model of a crystal, one assumes that: 

1. Each atom, ion, or molecule from which the crystal is constituted is trapped in a 

potential well formed by its interactions with neighboring species. This potential is 

denoted φ(V/N) with the volume-to-number V/N ratio written to keep in mind that it 

likely depends on the packing density (i.e., the distances among neighbors) within the 

crystal. Keep in mind that φ represents the interaction of any specific atom, ion, or 

molecule with the N-1 other such species. So, N φ/2, not N φ is the total interaction 

energy among all of the species; the factor of 1/2 is necessary to avoid double counting.  
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2. Each such species is assumed to undergo local harmonic vibrational motions about its 

equilibrium position (qJ
0) within the local well that traps it. If the crystal is isotropic, the 

force constants kJ  that characterize the harmonic potential 1/2 kJ (qJ-qJ
0)2 along the x, y, 

and z directions are equal; if not, these kJ parameters may be unequal. It is these force 

constants, along with the masses m of the atoms, ions, or molecules, that determine the 

harmonic frequencies νJ = 1/2π (kJ/m)1/2 of the crystal. 

3. The inter-species phonon vibrational partition function of the crystal is then assumed to 

be a product of N partition functions, one for each atom, ion, or molecule in the crystal, 

with each partition function taken to be of the harmonic vibrational form: 

 

Q = exp(-N φ/2kT) {ΠJ=1,3 exp(-hνJ/2kT) (1-exp(-hνJ/kT))-1}N. 

 

There is no factor of N! in the denominator because, unlike a gas of N species, each of 

these N species (atoms, ions, or molecules) are constrained to stay put (i.e., not free to 

roam independently) in the trap induced by their neighbors. In this sense, the N species 

are distinguishable rather than indistinguishable as they are in the gas case. The Nφ/2kT 

factor arises when one asks what the total energy of the crystal is, aside from its 

vibrational energy, relative to N separated species; in other words, what is the total 

cohesive energy of the crystal. This energy is N times the energy of any single species φ, 

but, as noted above, divided by 2 to avoid double counting the inter-species interaction 

energies.  

 This partition function can be subjected to the thermodynamic equations 

discussed earlier to compute various thermodynamic properties. One of the most useful to 

discuss for crystals is the heat capacity CV, which is given by (see the vibrational 

contribution to CV expressed in Section 7.5.1) : 

 

CV = Nk ΣJ=1,3 (hνJ/kT)2 exp(hνJ/kT) (exp(hνJ/kT) –1)-2. 

 

At very high temperatures, this function can be shown to approach 3Nk, which agrees 

with the experimental observation know as the law of Dulong and Petit.  However, at 

very low temperatures, this expression approaches: 
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CV → ΣJ=1,3 Nk (hνJ/kT)2 exp(-hνJ/kT), 

 

which goes to zero as T approaches zero, but not in a way that is consistent with 

experimental observation. That is, careful experimental data shows that all crystal heat 

capacities approach zero proportional to T3 at low temperature; the Einstein model’s CV 

approaches zero but not in the T3 form found in experiments.  

 So, although the Einstein model offers a very useful model of how a crystal’s 

stability relates to Nφ and how its CV depends on vibrational frequencies of the phonon 

modes, it does not work well at low temperatures. Nevertheless, it remains a widely used 

model in which to understand the phonons’ contributions to thermodynamic properties as 

long as one does not attempt to extrapolate its predictions to low T. 

 In the Debye model of phonons in crystals, one abandons the view in which each 

atom, ion, or molecule vibrates independently about it own equilibrium position and 

replaces this with a view in which the constituent species vibrate collectively in wave-

like motions. Each such wave has a wave length λ and a frequency ν that are related to 

the speed c of propagation of such waves in the crystal by 

 

c = λ ν. 

 

The speed c is a characteristic of the crystal’s inter-species forces; it is large for stiff 

crystals and small for soft crystals.  

 In a manner much like we used to determine the density of quantum states 

Ω(Ε) within a three-dimensional box, one can determine how many waves can fit within 

a cubic crystalline box having frequencies between ν and ν + dν. The approach to this 

problem is to express the allowed wave lengths and frequencies as: 

 

λn = 2L/n, 

 

νn = n c/2L, 
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where L is the length of the box on each of its sides and n is an integer 1, 2, 3, …. This 

prescription forces all wave lengths to match the boundary condition for vanishing at the 

box boundaries.  

 Then carrying out a count of how many (Ω(ν)) waves have frequencies between ν 

and ν + dν for a box whose sides are all equal gives the following expression: 

 

Ω(ν) = 12π V ν2/c3. 

 

The primary observation to be made is that the density of waves is proportional to ν2: 

 

Ω(ν) = a ν2. 

 

It is conventional to define the parameter a in terms of the maximum frequency νm  that 

one obtains by requiring that the integral of Ω(ν) over all allowed ν add up to 3N, the 

total number of inter-species vibrations that can occur: 

 

3N = ∫ Ω(ν) dν = a νm
3/3. 

 

This then gives the constant a in terms of νm and N and allows Ω(ν) to be written as 

 

Ω(ν) = 9Nν2/νm
3. 

 

The Debye model uses this wave picture and computes the total energy E of the crystal 

much as done in the Einstein model, but with the sum over 3N vibrational modes 

replaced by a continuous integral over the frequencies ν weighted by the density of such 

states Ω(ν) ((see the vibrational contribution to E expressed in Section 7.5.1):  

 

E = Nφ/2 + (9NkT/νm
3) ∫ [hν/2kT + (hν/kT) (exp(hν/kT) –1)-1 ]ν2 dν, 
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where the integral over ν ranges from 0 to νm. It turns out that the CV heat capacity 

obtained by taking the temperature derivative of this expression for E can be written as 

follows: 

 

CV = 3Nk [ 4 D(hνµ/kT) – 3(hνµ/kT) (exp(hνµ/kT) –1)-1 ] 

 

where the so-called Debye function D(u) is defined by 

 

D(u) = 3 u-3 ∫ x3 (exp(x) – 1)-1 dx, 

 

and the integral is taken from x = 0 to x = u. 

 The important thing to be noted about the Debye model is that the heat capacity, 

as defined above, extrapolates to 3Nk at high temperatures, thus agreeing with the law of 

Dulong and Petit, and varies at low temperature as 

 

CV → (12/5) Nkπ4 (kT/hνm)3. 

 

So, the Debye heat capacity does indeed vary as T3 at low T as careful experiments 

indicate. For this reason, it is appropriate to use the Debye model whenever one is 

interested in properly treating the energy, heat capacity, and other thermodynamic 

properties of crystals at temperatures for which kT/hνm is small. At higher temperatures, 

it is appropriate to use either the Debye or Einstein models. The major difference 

between the two lies in how they treat the spectrum of vibrational frequencies that occur 

in a crystal. The Einstein model says that only one (or at most three, if three different kJ 

values are used) frequency occurs νJ  = 1/2π (kJ/µ)1/2; each species in the crystal is 

assumed to vibrate at this frequency.  In contrast, the Debye model says that the species 

vibrate collectively and with frequencies ranging from ν  = 0 up to ν = νm, the so-called 

Debye frequency, which is proportional to the speed c at which phonons propagate in the 

crystal. In turn, this speed depends on the stiffness (i.e., the inter-species potentials) 

within the crystal.  
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7.5.3 Lattice Theories of Surfaces and Liquids 

 This kind of theory can be applied to a wide variety of chemical and physical 

problems, so it is a very useful model to be aware of. The starting point of the model is to 

consider a lattice containing M sites, each of which has c nearest neighbor sites (n.b., 

clearly, c will depend on the structure of the lattice) and to imagine that each of these 

sites can exist in either of two states that we label A and B. Before deriving the basic 

equations of this model, let me explain how the concepts of sites and A and B states are 

used to apply the model to various problems.   

1. The sites can represent binding sites on the surface of a solid and the two states A and 

B can represent situations in which the site is either occupied (A) or unoccupied (B) by a 

molecule that is chemisorbed or physisorbed to the site. This point of view is taken when 

one applies lattice models to adsorption of gases or liquids to solid surfaces. 

2. The sites can represent individual spin = 1/2 molecules or ions within a lattice, and the 

states A and B can denote the α and β spin states of these species. This point of view 

allows the lattice models to be applied to magnetic materials.  

3. The sites can represent positions that either of two kinds of molecules A and B might 

occupy in a liquid or solid in which case A and B are used to label whether each site 

contains an A or a B molecule. This is how we apply the lattice theories to liquid 

mixtures. 

4. The sites can represent cis- and trans- conformations in linkages within a polymer, and 

A and B can be used to label each such linkage as being either cis- or trans-. This is how 

we use these models to study polymer conformations. 

 

In Fig. 7.4, I show a two-dimensional lattice having 25 sites of which 16 are occupied by 

dark (A) species and 9 are occupied by lighter (B) species.  
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Figure 7.4 Two-dimensional lattice having 25 sites with 16 A and 9 B species 

 

 The partition function for such a lattice is written in terms of a degeneracy Ω and 

an energy E, as usual. The degeneracy is computed by considering the number of ways a 

total of NA + NB species can be arranged on the lattice: 

 

Ω = (NA+NB)!/[NA! NB!]. 

 

The interaction energy among the A and B species for any arrangement of the A 

and B on the lattice is assumed to be expressed in terms of pair wise interaction energies. 

In particular, if only nearest neighbor interaction energies are considered, one can write 

the total interaction energy Eint of any arrangement as 

 

Eint = NAA EAA + NBB EBB + NAB EAB 

 

where NIJ is the number of nearest neighbor pairs of type I-J and EIJ is the interaction 

energy of an I-J pair. The example shown in Fig. 7.4 has NAA = 16, NBB = 4 and NAB = 19. 
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The three parameters NIJ that characterize any such arrangement can be re-

expressed in terms of the numbers NA and NB of A and B species and the number of 

nearest neighbors per site c as follows: 

 

2NAA + NAB = cNA 

 

2NBB +  NAB = cNB. 

 

Note that the sum of these two equations states the obvious fact that twice the sum of AA, 

BB, and AB pairs must equal the number of A and B species multiplied by the number of 

neighbors per species, c. 

 Using the above relationships among NAA, NBB, and NAB, we can rewrite the 

interaction energy as 

 

Eint = EAA (c NA – NAB)/2 + EBB (c NB – NAB)/2 + EAB NAB 

 

= (NA EAA + NB EBB) c/2 + (2 EAB – EAA – EBB ) NAB/2 

 

The reason it is helpful to write Eint in this manner is that it allows us to express things in 

terms of two variables over which one has direct experimental control, NA and NB, and 

one variable NAB that characterizes the degree of disorder among the A and B species. 

That is, if NAB is small, the A and B species are arranged on the lattice in a phase-

separated manner; whereas, if NAB is large, the A and B are well mixed.  

 The total partition function of the A and B species arranged on the lattice is 

written as follows: 

 

Q = qA
NA qB

NB ΣNAB Ω(NA, NB, NAB) exp(-Eint/kT). 

 

Here, qA and qB are the partition functions (electronic, vibrational, etc.) of the A and B 

species as they sit bound to a lattice site and Ω(NA, NB, NAB) is the number of ways that 

NA species of type A and NB of type B can be arranged on the lattice such that there are 
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NAB A-B type nearest neighbors. Of course, Eint is the interaction energy discussed earlier. 

The sum occurs because a partition function is a sum over  all possible states of the 

system. There are no (1/NJ!) factors because, as in the Einstein and Debye crystal models, 

the A and B species are not free to roam but are tied to lattice sites and thus are 

distinguishable.  

 This expression for Q can be rewritten in a manner that is more useful by 

employing the earlier relationships for NAA  and NBB:  

 

 

Q = (qA exp(-cEAA/2kT))NA (qBexp(-cEBB/2kT))NB ΣNAB Ω(NA, NB, NAB) exp(NABX/2kT), 

 

where  

 

X = (-2 EAB + EAA + EBB ). 

 

The quantity X plays a central role in all lattice theories because it provides a measure of 

how different the A-B interaction energy is from the average of the A-A and B-B 

interaction energies. As we will soon see, if X is large and negative (i.e., if the A-A and 

B-B interactions are highly attractive), phase separation can occur; if X is positive, phase 

separation will not occur.  

 The problem with the above expression for the partition function is that no one 

has yet determined an analytical expression for the degeneracy Ω(NA, NB, NAB) factor. 

Therefore, in the most elementary lattice theory, known as the Bragg-Williams 

approximation, one approximates the sum over NAB by taking the following average value 

of NAB: 

 

NAB* = NA (cNB)/(NA+NB) 

 

in the expression for Ω. This average is formed by taking the number of A sites and 

multiplying by the number of neighbor sites (c) and by the fraction of these neighbor sites 
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that would be occupied by a B species if mixing were random. This aproximation 

produces 

 

Q = (qA exp(-cEAA/2kT))NA (qBexp(-cEBB/2kT))NB exp(NAB*X/2kT) ΣNAB Ω(NA, NB, NAB). 

 

Finally, we realize that the sum ΣNAB Ω(NA, NB, NAB) is equal to the number of ways of 

arranging NA A species and NB B species on the lattice regardless of how many A-B 

neighbor pairs there are. This number is, of course, (NA+NB)!/[(NA!)(NB!)].  

 So, the Bragg-Williams lattice model partition function reduces to: 

 

Q = (qA exp(-cEAA/2kT))NA (qBexp(-cEBB/2kT))NB (NA+NB)!/[(NA!)(NB!)] exp(NAB*X/2kT). 

 

The most common connection one makes to experimental measurements using this 

partition function arises by computing the chemical potentials of the A and B species on 

the lattice and equating these to the chemical potentials of the A and B as they exist in the 

gas phase. In this way, one uses the equilibrium conditions (equal chemical potentials in 

two phases) to relate the vapor pressures of A and B, which arise through the gas-phase 

chemical potentials, to the interaction energy X.  

 Let me now show you how this is done. First, we use 

 

µJ = -kT (∂lnQ/∂NJ)T,V 

 

to compute the A and B chemical potentials on the lattice. This gives 

 

µA = -kT{ ln(qAexp(-cEAA/2kT)) – ln(NA/(NA+NB)) + (1-[NA/(NA+NB)])2 cX/2kT } 

 

and an analogous expression for µB with NB replacing NA. The expression for the gas-

phase chemical potentials µA
g and µB

g given earlier in this Chapter has the form: 

 

µ = - kT ln {[2πmkT/h2]3/2 (kT/p)} – kT ln[(π1/2/σ) (8π2IAkT/h2)1/2  (8π2IBkT/h2)1/2 
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(8π2ICkT/h2)1/2]  +kT  ΣJ=1,3N-6 [hνJ/2kT + ln(1-exp(-hνJ/kT))] - De – kT lnωe, 

 

within which the vapor pressure appears. The pressure dependence of this gas-phase 

expression can be factored out to write each µ as: 

 

µA
g  = µA

0 + kT ln(pA), 

 

where pA is the vapor pressure of A (in atmosphere units) and µA
0 denotes all of the other 

factors in µA
g. Likewise, the lattice-phase chemical potentials can be written as a term that 

contains the NA and NB dependence and a term that does not: 

 

µA = -kT{ ln(qAexp(-cEAA/2kT)) – lnXA + (1-XA)2 cX/2kT }, 

 

where XA is the mole fraction of A (NA/(NA+NB)). Of course, an analogous expression 

holds for µB.  

 We now perform two steps: 

1. We equate the gas-phase and lattice-phase chemical potentials of species A in a case 

where the mole fraction of A is unity. This gives 

 

 µA
0 + kT ln(pA

0) = -kT{ ln(qAexp(-cEAA/2kT))} 

 

where pA
0 is the vapor pressure of A that exists over the lattice in which only A species 

are present.  

2. We equate the gas- and lattice-phase chemical potentials of A for an arbitrary chemical 

potential XA and obtain: 

 

µA
0 + kT ln(pA) = -kT{ ln(qAexp(-cEAA/2kT)) – lnXA + (1-XA)2 cX/2kT }, 

 

which contains the vapor pressure pA of A over the lattice covered by A and B with XA 

being the mole fraction of A. 
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Subtracting these two equations and rearranging, we obtain an expression for how the 

vapor pressure of A depends on XA: 

 

pA = pA
0 XA exp(-cX(1-XA)2/2kT). 

 

 

Recall that the quantity X is related to the interaction energies among various species as 

 

X = (-2 EAB + EAA + EBB ). 

 

 Let us examine that physical meaning of the above result for the vapor pressure. 

First, if one were to totally ignore the interaction energies (i.e., by taking X = 0), one 

would obtain the well known Raoult’s Law expression for the vapor pressure of a 

mixture: 

 

pA = pA
0 XA 

 

pB = pB
0 XB. 

 

In Fig. 7.5, I plot the A and B vapor pressures vs. XA. The two straight lines are, of 

course, just the Raoult’s Law findings. I also plot the pA vapor pressure for three values 

of the X interaction energy parameter. When X is positive, meaning that the A-B 

interactions are more energetically favorable than the average of the A-A and B-B 

interactions, the vapor pressure of A is found to deviate negatively from the Raoult’s Law 

prediction. This means that the observed vapor pressure is lower than is that expected 

based solely on Raoult’s Law. On the  other hand, when X is negative, the vapor pressure 

deviates positively from Raoult’s Law.  
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Figure 7.5. Plots of vapor pressures in an A, B mixture as predicted in the lattice model 

with the Bragg-Williams approximation. 

 

 An especially important and interesting case arises when the X parameter is 

negative and has a value that makes cX/2kT be more negative than –4. It turns out that in 

such cases, the function pA suggested in this Bragg-Williams model displays a behavior 

that suggests a phase transition may occur. Hints of this behavior are clear in Fig. 7.5 

where one of the plots displays both a maximum and a minimum, but the plots for X > 0 

and for cX/2kT > -4 do not. Let me now explain this further by examining the derivative 

of pA with respect to XA: 

 

dpA/dXA = pA
0 {1 + XA(1-XA) 2cX/2kT} exp(-cX(1-XA)2/2kT). 

 

Setting this derivative to zero (in search of a maximum or minimum), and solving for the 

values of XA that make this possible, one obtains: 
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XA = 1/2 {1 ± (1+4kT/cX)12 }. 

 

Because XA is a mole fraction, it must be less than unity and greater than zero. The above 

result giving the mole fraction at which dpA/dXA = 0 will not produce a realistic value of 

XA unless  

 

cX/kT < - 4. 

 

If cX/kT = -4, there is only one value of XA (i.e., XA = 1/2) that produces a zero slope; for 

cX/kT < -4, there will be two such values given by XA = 1/2 {1 ± (1+4kT/cX)12}, which is 

what we see in Fig. 7.5 where the plot displays both a maximum and a minimum.  

 What does it mean for cX/kT to be less than –4 and why is this important? For X 

to be negative, it means that the average of the A-A and B-B interactions are more 

energetically favorable than is the A-B interactions. It is for this reason that a phase 

separation is may be favored in such cases (i.e., the A species prefer to be near other A 

species more than to be near B species, and similarly for the B species). However, 

thermal motion can overcome a slight preference for such separation. That is, if X is not 

large enough, kT can overcome this slight preference. This is why cX must be less than  

-4kT, not just less than zero. 

 So, the bottom line is that if the A-A and B-B interactions are more attractive, on 

average, than are the A-B interactions, one can experience a phase separation in which 

the A and B species do not remain mixed on the lattice but instead gather into two 

distinct kinds of domains. One domain will be rich in the A species, having an XA value 

equal to that shown in the right dot in Fig. 7.5. The other domains will be rich in B and 

have an XA value of that shown by the left dot.  

 As I noted in the introduction to this Section, lattice models can be applied to a 

variety of problems. We just analyzed how it is applied, within the Bragg-Williams 

approximation, to mixtures of two species. In this way, we obtain expressions for how the 

vapor pressures of the two species in the liquid or solid mixture display behavior that 
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reflects their interaction energies. Let me now briefly show you how the lattice model is 

applied in some other areas.  

 In studying adsorption of gases to sites on a solid surface, one imagines a surface 

containing M sites per unit area A with Nad molecules (that have been adsorbed from the 

gas phase) bound to these sites. In this case, the interaction energy Eint introduced earlier 

involves only interactions among neighboring adsorbed molecules; there are no lateral 

interactions among empty surface sites or between empty surface sites and adsorbed 

molecules. So, we can make the following replacements  in our earlier equations: 

 

NA →  Nad 

 

NB → M – Nad 

 

Eint = Ead,ad Nad,ad, 

 

where Nad,ad is the number of nearest neighbor pairs of adsorbed species and Ead,ad is the 

pairwise interaction energy between such a pair. The primary result obtained by equating 

the chemical potentials of the gas-phase and adsorbed molecules is: 

 

p = kT (qgas/V) (1/qad) [θ/(1-θ)] exp(Eadcθ/kT). 

 

Here qgas/V is the partition function of the gas-phase molecules per unit volume, qad is the 

partition function of the adsorbed molecules (which contains the adsorption energy as 

exp(-φ/kT)) and θ is called the coverage (i.e., the fraction of surface sites to which 

molecules have adsorbed). Clearly, θ plays the role that the mole fraction XA played 

earlier. This so-called adsorption isotherm equation allows one to connect the pressure of 

the gas above the solid surface to the coverage.  

 As in our earlier example, something unusual occurs when the quantity Eadcθ/kT 

is negative and beyond a critical value. In particular, differentiating the expression for p 

with respect to θ and finding for what θ value(s) dp/dθ vanishes, one finds: 
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θ = 1/2 [ 1 ± (1 +4kT/cEad)1/2 ]. 

 

 

Since θ is a positive fraction, this equation can only produce useful values if  

 

cEad/kT < -4. 

 

In this case, this means that if the attractions between neighboring adsorbed molecules is 

strong enough, it can overcome thermal factors to cause phase-separation to occur. The 

kind of phase separation on observes is the formation of islands of adsorbed molecules 

separated by regions where the surface has little or no adsorbed molecules.  

 There is another area where this kind of lattice model is widely used. When 

studying magnetic materials one often uses the lattice model to describe the interactions 

among pairs of neighboring spins (e.g., unpaired electrons on neighboring molecules or 

nuclear spins on neighboring molecules). In this application, one assumes that up or 

down spin states are distributed among the lattice sites, which represent where the 

molecules are located. Nα and Nβ are the total number such spins, so  (Nα - Nβ) is a 

measure of what is called the net magnetization of the sample. The result of applying the 

Bragg-Williams approximation in this case is that one again observes a critical condition 

under which strong spin pairings occur. In particular, because the interactions between α 

and α spins, denoted –J, and between α and β spins, denoted + J, are equal and opposite, 

the X variable characteristic of all lattice models reduces to: 

 

X = -2Eα,β + Eα,α  + Eβ,β = -4 J. 

 

The critical condition under which one expects like spins to pair up and thus to form 

islands of α-rich centers and other islands of β-rich centers is 

 

-4 cJ/kT < - 4 

 

or  
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cJ/kT > 1. 

 

 

7.5.4 Virial Corrections to Ideal-Gas Behavior 

 

 Recall from our earlier treatment of classical partition function that one can 

decompose the total partition function into a product of two factors: 

 

Q = {h-NM (N!)-1∫ exp (- H0(y, p)/kT) dy dp  {∫ exp (-U(r)/kT) dr} 

 

one of which 

 

Qideal = h-NM (N!)-1 ∫ exp (- H0(y, p)/kT) dy dp VN 

 

is the result if no intermolecular potentials are operative. The second factor 

 

Qinter =  (1/VN) {∫ exp (-U(r)/kT) dr} 

 

thus contains all of the effects of intermolecular interactions. Recall also that all of the 

equations relating partition functions to thermodynamic properties involve taking lnQ and 

derivatives of lnQ. So, all such equations can be cast into sums of two parts; that arising 

from lnQideal and that arising from lnQinter. In this Section, we will be discussing the 

contributions of Qinter to such equations.  

 The first thing that is done to develop the so-called cluster expansion of Qinter is to 

assume that the total intermolecular potential energy can be expressed as a sum of pair 

wise additive terms: 

 

U = ΣI<J U(rIJ) 
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where rIJ labels the distance between molecule I and molecule J. This allows the 

exponential appearing in Qinter to be written as a product of terms, one for each pair of 

molecules: 

 

exp(-U/kT) = exp(- ΣI<JU(rIJ)/kT) = ΠI<J exp(- U(rIJ)/kT). 

 

Each of the exponentials exp(- U(rIJ)/kT) is then expressed as follows: 

 

exp(- U(rIJ)/kT) = 1 + (exp(- U(rIJ)/kT) –1) = 1 + fIJ, 

 

the last equality being what defines fIJ. These fIJ functions are introduced because, 

whenever the molecules I and J are distant from one another and thus not interacting, 

U(rIJ) vanishes, so exp(- U(rIJ)/kT) approaches unity, and thus fIJ vanishes. In contrast, 

whenever molecules I and J are close enough to experience strong repulsive interactions, 

U(rIJ) is large and positive, so fIJ approaches –1. These properties make fIJ a useful 

measure of how molecules are interacting; if they are not, f = 0, if they are repelling 

strongly, f = -1, and if they are strongly attracting, f is large and positive.  

 Inserting the fIJ functions into the product expansion of the exponential, one 

obtains: 

 

exp(-U/kT) = ΠI<J  (1 + fIJ) = 1 + ΣI<J fIJ + ΣI<J ΣK<L fIJ f KL + … 

 

which is called the cluster expansion in terms of the fIJ pair functions. When this 

expansion is substituted into the expression for Qinter, we find: 

 

Qinter = V-N ∫ (1 + ΣI<J fIJ + ΣI<J ΣK<L fIJ f KL + …) dr 

 

where the integral is over all 3N of the N molecule’s center of mass coordinates.  

 The integrals involving only one fIJ function are all equal (i.e., for any pair I, J, the 

molecules are identical in their interaction potentials) and reduce to: 
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N(N-1)/2 V-2 ∫ f(r1,2) dr1 dr2.  

 

The integrals over dr3 … drN produce VN-2, which combines with V-N to produce the V-2 

seen. Finally, because f(r1,2) depends only on the relative positions of molecules 1 and 2, 

the six dimensional integral over dr1 dr2 can be replaced by integrals over the relative 

location of the two molecules r, and the position of their center of mass R. The integral 

over R gives one more factor of V, and the above cluster integral reduces to 

 

4π N(N-1)/2 V-1 ∫ f(r) r2 dr. 

 

with the 4π coming from the angular integral over the relative coordinate r. Because the 

total number of molecules N is very large, it is common to write the N(N-1)/2 factor as 

N2/2. 

 The cluster integrals containing two fIJ fKL factors can also be reduced. However, 

it is important to keep track of different kinds of such factors (depending on whether the 

indices I, J, K, L are all different or not). For example, terms of the form 

 

V-N ∫ fIJ fKL dr1 dr2 … drN with I, J, K, and L all unique 

 

reduce (again using the equivalence of the molecules and the fact that fIJ depends only on 

the relative positions of I and J) to: 

 

1/4 N4 (4π)2 V-2 ∫ f12  r12
2 dr12 ∫ f34 

 r34
2 dr34, 

 

where, again I used the fact that N is very large to replace N(N-1)/2 (N-2)(N-3)/2 by 

N4/4. 

 On the other hand, cluster integrals with, for example, I=K but J and L different 

reduce as follows: 

 

V-N ∫ f12 f13 dr1 dr2 … drN = 1/2 V-3 N3 ∫ f12 f13 dr1 dr2 dr3. 
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Because f12 depends only on the relative positions of molecules 1 and 2 and f13 depends on 

the relative positions of 1 and 3, the nine-dimensional integral over dr1 dr2 dr3 can be 

changed to a six-dimensional integral over dr12 dr13 and an integral over the location of 

molecule 1; the latter integral produces a factor of V when carried out. Thus, the above 

cluster integral reduces to: 

 

(4π)2 1/2 V-2 N3 ∫ f12 f13 r12
2 r13

2 dr12 dr13 . 

 

 There is a fundamental difference between cluster integrals of the type f12 f34 and 

those involving f12 f13. The former are called unlinked clusters because they involve the 

interaction of molecules 1 and 2 and a separate interaction of molecules 3 and 4. The 

latter are called linked because they involve molecule 1 interacting simultaneously with 

molecules 2 and 3 (although 2 and 3 need not be close enough to cause f23 to be non-

zero). The primary differences between unlinked and linked cluster contributions are: 

1. The total number of unlinked terms is proportional to N4, while the number of linked 

terms is proportional to N3. This causes the former to be more important than the latter 

because they are more numerous. 

2. The linked terms only become important at densities where there is a significant 

probability that three molecules occupy nearby regions of space. The unlinked terms, on 

the other hand, do not require that molecules 1 and 2 be anywhere near molecules 3 and 

4. This also causes the unlinked terms to dominate especially at low and moderate 

densities.  

I should note that a similar observation was made in Chapter 6 when we discussed the 

configuration interaction and coupled-cluster expansion of electronic wave functions. 

That is, we noted that doubly excited configurations (analogous to fIJ) are the most 

important contributions beyond the single determinant, and that quadruple excitations in 

the form of unlinked products of double excitations were next most important, not triple 

excitations. The unlinked nature in this case was related to the amplitudes of the 

quadruple excitations being products of the amplitudes of two double excitations. So, 

both in electronic structures and in liquid structure, one finds that pair correlations 

followed by unlinked pair correlations are the most important to consider.  
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 Clearly, the cluster expansion approach to Qinter can be carried to higher and 

higher-level clusters (e.g., involving f12 f34 f56 or f12 f13 f34, etc.). Generally, one finds that 

the unlinked terms (e.g., f12 f34 f56 in this example) are most important (because they are 

proportional to higher powers of N and because they do not require more than binary 

collisions). It is most common, however, to employ a severely truncated expansion and to 

retain only the linked terms. Doing so for Qinter produces at the lower levels: 

 

Qinter = 1 + 1/2 (N/V)2 4π V ∫ f  r2 dr + 1/4 (N/V)4 [4π V ∫ f  r2 dr ]2 

 

+ 1/2 (N/V)3 V (4π)2 ∫ f12 f13 r12
2 r13

2 dr12 dr13. 

 

 One of the most common properties to compute using a partition function that 

includes molecular interactions in the cluster manner is the pressure, which is calculated 

as: 

 

p = kT (∂lnQ/∂V)N,T. 

 

Using Q = Qideal Qinter and inserting the above expression for Qinter produces the following 

result for the pressure: 

 

pV/NkT = 1 + B2 (N/V) + B3 (N/V)2 + … 

 

where the so-called virial coefficients B2 and B3 are defined as the factors proportional to 

(N/V) and (N/V)2, respectively. The second virial coefficient’s expression in terms of the 

cluster integrals is: 

 

B2  = - 2π ∫ f  r2 dr = - 2π ∫ [exp(-U(r)/kT) –1]  r2 dr. 

 

The third virial coefficient involves higher order cluster integrals. 
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 The importance of such cluster analyses is that they allow various thermodynamic 

properties (e.g., the pressure above) to be expressed as one contribution that would occur 

if the system consisted of non-interacting molecules and a second contribution that arises 

from the intermolecular forces. It thus allows experimental measurements of the 

deviation from ideal (i.e., non-interacting) behavior to provide a direct way to determine 

intermolecular potentials. For example, by measuring pressures at various N/V values 

and various temperatures, one can determine B2 and thus gain valuable information about 

the intermolecular potential U.  

 

7.6 Chapter Summary 

 In this Chapter, you were introduced to many of the main concepts and methods 

of statistical mechanics. You should be familiar with the following topics by now 

a. Microcanonical, canonical, and grandcanonical ensembles and their partition funcitons. 

b. Ensemble averages being equal to long-time averages; the equal a priori postulate. 

c. Fluctuations 

d. Expressions for thermodynamic properties in terms of partition functions. 

e. Monte Carlo methods including Metropolis sampling and umbrella sampling. 

f. Molecular dynamics simulations, including molecular mechanics force fields. 

g. Coarse graining methods. 

h. Time correlation functions. 

i. Einstein and Debye models for solids’ phonons. 

j. Lattice theories of adsorption, liquids, and phase transitions. 

k. Virial expansions of thermodynamic properties. 

 

 

 

 

 

 

 

 


