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Chapter 4. Some Important Tools of Theory 
 

 For all but the most elementary problems, many of which serve as fundamental 

approximations to the real behavior of molecules (e.g., the Hydrogenic atom, the 

harmonic oscillator, the rigid rotor, particles in boxes), the Schrödinger equation can 

not be solved exactly. It is therefore extremely useful to have tools that allow one to 

approach these insoluble problems by solving other Schrödinger equations that can be 

trusted to reasonably describe the solutions of the impossible problem. The approaches 

discussed in this Chapter are the most important tools of this type.  

 

4.1. Perturbation Theory  

 

 In most practical applications of quantum mechanics to molecular problems, one 

is faced with the harsh reality that the Schrödinger equation pertinent to the problem at 

hand cannot be solved exactly. To illustrate how desperate this situation is, I note that 

neither of the following two Schrödinger equations has ever been solved exactly 

(meaning analytically): 

 

1. The Schrödinger equation for the two electrons moving about the He nucleus: 

 

[- h2/2me ∇l2 - h2/2me ∇22 – 2e2/r1 – 2e2/r2 + e2/r1,2] ψ = E ψ, 

 

2. The Schrödinger equation for the two electrons moving in an H2 molecule even if the 

locations of the two nuclei (labeled A and B) are held clamped as in the Born-

Oppenheimer approximation: 

 

[- h2/2me ∇l2 - h2/2me ∇22 – e2/r1,A – e2/r2,A – e2/r1,B – e2/r2,B + e2/r1,2] ψ = E ψ. 

 

These two problems are examples of what is called the “three-body problem” meaning 

solving for the behavior of three bodies moving relative to one another. Motions of the 

sun, earth, and moon (even neglecting all the other planets and their moons) constitute 
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another three-body problem. None of these problems, even the classical Newton’s 

equation for the sun, earth, and moon, have ever been solved exactly.  So, what does one 

do when faced with trying to study real molecules using quantum mechanics?  

 There are two very powerful tools that one can use to “sneak up” on the solutions 

to the desired equations by first solving an easier model problem and then using the 

solutions to this problem to approximate the solutions to the real Schrödinger problem of 

interest. For example, to solve for the energies and wave functions of a boron atom, one 

could use hydrogenic 1s orbitals (but with Z = 5) and hydrogenic 2s and 2p orbitals 

(with Z = 3 to account for the screening of the full nuclear charge by the two 1s 

electrons) as a starting point. To solve for the vibrational energies of a diatomic 

molecule whose energy vs. bond length E(R) is known, one could use the Morse 

oscillator wave functions and energies as starting points. But, once one has decided on a 

reasonable model to use, how does one connect this model to the real system of interest? 

Perturbation theory and the variational method are the two tools that are most commonly 

used for this purpose, and it is these two tools that are covered in this Chapter. 

 

 The perturbation theory approach provides a set of analytical expressions for 

generating a sequence of approximations to the true energy E and true wave function 

ψ. This set of equations is generated, for the most commonly employed perturbation 

method, Rayleigh-Schrödinger perturbation theory (RSPT), as follows. First, one 

decomposes the true Hamiltonian H into a so-called zeroth-order part H0 (this is the 

Hamiltonian of the model problem used to represent the real system) and the difference 

(H-H0), which is called the perturbation and usually denoted V: 

 

H = H0 + V. 

 

It is common to associate with the perturbation V a strength parameter λ, which could, 

for example, be associated with the strength of the electric field when the perturbation 

results from the interaction of the molecule of interest with an electric field. In such 

cases, it is usual to write the decomposition of H as 
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H = H0 + λ V 

 

A fundamental assumption of perturbation theory is that the wave functions and energies 

for the full Hamiltonian H can be expanded in a Taylor series involving various powers 

of the perturbation parameter λ. Hence, one writes the energy E and the wave function ψ 

as zeroth-, first-, second, etc, order pieces which form the unknowns in this method: 

 

E = E0 + E1  +E2 + E3 + ... 

 

ψ = ψ0 + ψ1 + ψ2 + ψ3 + ... 

 

with En and ψn being proportional to λn. Next, one substitutes these expansions of E, H 

and ψ into Hψ = Eψ. This produces one equation whose right and left hand sides both 

contain terms of various “powers” in the perturbation λ. For example, terms of the form 

E1 ψ2 and V ψ2 and E0 ψ3 are all of third power (also called third order). Next, one 

equates the terms on the left and right sides that are of the same order. This produces a 

set of equations, each containing all the terms of a given order. The zeroth, first, and 

second-order such equations are given below: 

 

H0 ψ0 = E0 ψ0, 

 

H0 ψ1 + V ψ0 = E0 ψ1 + E1 ψ0 

 

H0 ψ2 + V ψ1 = E0 ψ2 + E1 ψ1 + E2 ψ0. 

 

It is straightforward to see that the nth order expression in this sequence of equations can 

be written as 

H0 ψn + V ψn-1 = E0 ψn + E1 ψn-1 + E2 ψn-2 + E3 ψn-3 + … + En ψ0. 
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The zeroth-order equation simply instructs us to solve the model Schrödinger equation 

to obtain the zeroth-order wave function ψ0 and its zeroth-order energy E0. Since H0 is a 

Hermitian operator, it has a complete set of such eigenfunctions, which we label {ψ0
k} 

and {E0
k}. One of these states will be the one we are interested in studying (e.g., we 

might be interested in the effect of an external electric field on the 2s state of the 

hydrogen atom), but, as will become clear soon, we actually have to find the full set of 

{ψ0
k} and {E0

k} (e.g., we need to also find the 1s, 2p, 3s, 3p, 3d, etc. states of the 

hydrogen atom when studying the electric field’s effect on the 2s state).  

In the first-order equation, the unknowns are ψ1 and E1 (recall that V is assumed to be 

known because it is the difference between the Hamiltonian one wants to solve and the 

model Hamiltonian H0). To solve the first-order and higher-order equations, one expands 

each of the corrections to the wave function ψ of interest in terms of the complete set of 

wave functions of the zeroth-order problem {ψ0
J}. As noted earlier, this means that one 

must solve H0 ψ0
J = E0

J ψ
0

J not just for the zeroth-order state one is interested in (denoted 

ψ0 above) but for all of the other zeroth-order states {ψ0
J}. For example, expanding ψ1 in 

this manner gives: 

 

€ 

ψ1 = CJ
1ψJ

0

J
∑  

 

 

Now, the unknowns in the first-order equation become E1 and the 

€ 

CJ
1  expansion 

coefficients. To solve H0 ψ1 + V ψ0 = E0 ψ1 + E1 ψ0, one proceeds as follows:  

1. First, one multiplies this equation on the left by the complex conjugate of the zeroth-

order function for the state of interest ψ0 and integrates over the variables on which the 

wave functions depend. This gives 

 

<ψ0|H0|ψ1> + <ψ0|V|ψ0> = E0 <ψ0|ψ1> + E1 <ψ0|ψ0>. 
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The first and third terms cancel one another because H0 ψ0 = E0 ψ0, and the fourth term 

reduces to E1 because ψ0 is assumed to be normalized. This allows the above equation to 

be written as 

 

E1 = <ψ0 | V | ψ0> 

 

which is the RSPT expression for E1. It says the first-order correction to the energy E0 of 

the unperturbed state can be evaluated by computing the average value of the 

perturbation with respect to the unperturbed wave function ψ0. 

2. Returning to the first-order equation and multiplying on the left by the complex 

conjugate of one of the other zeroth-order functions 

€ 

ψJ
0 gives 

 

<

€ 

ψJ
0|H0|ψ1> + <

€ 

ψJ
0|V|ψ0> = E0 <

€ 

ψJ
0|ψ1> + E1 <

€ 

ψJ
0|ψ0>. 

 

Using H0

€ 

ψJ
0 = 

€ 

EJ
0

€ 

ψJ
0, the first term reduces to 

€ 

EJ
0 <

€ 

ψJ
0|ψ1>, and the fourth term vanishes 

because 

€ 

ψJ
0 is orthogonal to ψ0 because these two functions are different eigenfunctions 

of H0. This reduces the equation to 

 

€ 

EJ
0<

€ 

ψJ
0|ψ1> + <

€ 

ψJ
0|V|ψ0> = E0 <

€ 

ψJ
0|ψ1>  

 

 

The unknown in this expression is <

€ 

ψJ
0|ψ1>, which is the expansion coefficient 

€ 

CJ
1  for 

the expansion of ψ1 in terms of the zeroth-order functions {

€ 

ψJ
0}. In RSPT, one assumes 

that the only contribution of ψ0 to the full wave function ψ occurs in zeroth-order; this is 

referred to as assuming intermediate normalization of ψ. In other words, <ψ0|ψ> = 1 

because <ψ0|ψ0> = 1 and <ψ0|ψn> = 0 for n = 1, 2, 3, … So, the coefficients <

€ 

ψJ
0|ψ1> 

appearing in the above equation are all one needs to describe ψ1.  

3. If the state of interest ψ0 is non-degenerate in zeroth-order (i.e., none of the other 

€ 

EJ
0 

is equal to E0), this equation can be solved for the needed expansion coefficients 
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€ 

<ψJ
0 |ψ1 >=

<ψJ
0 |V |ψ 0 >
E 0 − EJ

0  

 

which allow the first-order wave function to be written as 

 

€ 

ψ1 = ψJ
0 <ψ 0 |V |ψJ

0 >
E 0 − EJ

0
J
∑  

 

where the index J is restricted such that ψJ
0 not equal the state ψ0 you are interested in.  

4. However, if one or more of the zeroth-order energies 

€ 

EJ
0 is equal to E0, an additional 

step needs to be taken before the above expression for ψ1 can be used. If one were to try 

to solve 

€ 

EJ
0<

€ 

ψJ
0|ψ1> + <

€ 

ψJ
0|V|ψ0> = E0 <

€ 

ψJ
0|ψ1> without taking this extra step, the 

<

€ 

ψJ
0|ψ1> values for those states with 

€ 

EJ
0  = E0 could not be determined because the first 

and third terms would cancel and the equation would read <

€ 

ψJ
0|V|ψ0>  = 0.  The way 

RSPT deals with this paradox is realize that, within a set of N degenerate states, any N 

orthogonal combinations of these states will also be degenerate. So RSPT assumes that 

one has already chosen the degenerate sets of zeroth-order states to make <

€ 

ψJ
0|V|

€ 

ψK
0 > = 

0 for K ≠ J. This extra step is carried out in practice by forming the matrix representation 

of V in the original set of degenerate zeroth-order states and then finding the unitary 

transformation among these states that diagonalizes this matrix. These transformed states 

are then what one uses as 

€ 

ψJ
0 and ψ0 in the RSPT expressions. This means that the 

paradoxical result <

€ 

ψJ
0|V|ψ0>  = 0 is indeed obeyed by this choice of states, so one does 

not need to determine the coefficients <

€ 

ψJ
0|ψ1> for 

€ 

ψJ
0 belonging to the degenerate 

zeroth-order states (i.e., these coefficients can be assumed to be zero). The bottom line is 

that the expression 

 

€ 

ψ1 = ψJ
0 <ψ 0 |V |ψJ

0 >
E 0 − EJ

0
J
∑  
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remains valid, but the summation index J is now restricted to exclude any members of 

the zeroth-order states that are degenerate with ψ0.  

 To obtain the expression for the second-order correction to the energy of the state 

of interest, one returns to 

 

H0 ψ2 + V ψ1 = E0 ψ2 + E1 ψ1 + E2 ψ0 

 

Multiplying on the left by the complex conjugate of ψ0 and integrating yields 

 

<ψ0|H0|ψ2> + <ψ0|V|ψ1> = E0 <ψ0|ψ2> + E1 <ψ0|ψ1> + E2 <ψ0|ψ0>. 

 

The intermediate normalization condition causes the fourth term to vanish, and the first 

and third terms cancel one another. Recalling the fact that ψ0 is normalized, the above 

equation reduces to  

 

<ψ0|V|ψ1> = E2. 

 

Substituting the expression obtained earlier for ψ1 allows E2 to be written as 

 

€ 

E 2 =
|<ψ 0 |V |ψJ

0 >|2

E 0 − EJ
0

J
∑  

 

where, as before, the sum over J is limited to states that are not degenerate with ψ0 in 

zeroth-order.  

 

These are the fundamental working equations of Rayleigh-Schrödinger perturbation 

theory. They instruct us to compute the average value of the perturbation taken over a 

probability distribution equal to ψ0* ψ0 to obtain the first-order correction to the energy 

E1. They also tell us how to compute the first-order correction to the wave function and 

the second-order energy in terms of integrals 

€ 

<ψ 0 |V |ψJ
0 >  coupling ψ0 to other zeroth-

order states and denominators involving energy differences 

€ 

E 0 − EJ
0 .  
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 An analogous approach is used to solve the second- and higher-order equations. 

For example, the equation for the nth order energy and wave functions reads: 

 

H0 ψn + V ψn-1 = E0 ψn + E1 ψn-1 + E2 ψn-2 + E3 ψn-3 + … + En ψ0 

 

The nth order energy is obtained by multiplying this equation on the left by ψ0* and 

integrating over the relevant coordinates (and using the fact that ψ0 is normalized and the 

intermediate normalization condition <ψ0|ψm> = 0 for all m > 0): 

 

    <ψ0|V|ψn-1> = En. 

 

This allows one to recursively solve for higher and higher energy corrections once the 

various lower-order wave functions ψn-1 are obtained. To obtain the expansion 

coefficients for the ψn expanded in terms of the zeroth-order states {

€ 

ψJ
0}, one multiplies 

the above nth order equation on the left by 

€ 

ψJ
0 (one of the zeroth-order states not equal to 

the state ψ0 of interest) and obtains 

 

€ 

EJ
0<

€ 

ψJ
0|ψn> + <

€ 

ψJ
0|V| ψn-1> = E0 <

€ 

ψJ
0|ψn> + E1 <

€ 

ψJ
0|ψn-1>  

 

+ E2 <

€ 

ψJ
0|ψn-2> + E3 <

€ 

ψJ
0|ψn-3> + … + En <

€ 

ψJ
0|ψ0>. 

 

The last term on the right-hand side vanishes because 

€ 

ψJ
0 and ψ0 are 

orthogonal. The terms containing the nth order expansion coefficients <

€ 

ψJ
0|ψn> can be 

brought to the left-hand side to produce the following equation for these unknowns: 

 

€ 

EJ
0<

€ 

ψJ
0|ψn>  - E0 <

€ 

ψJ
0|ψn> = - <

€ 

ψJ
0|V| ψn-1> + E1 <

€ 

ψJ
0|ψn-1>  

 

+ E2 <

€ 

ψJ
0|ψn-2> + E3 <

€ 

ψJ
0|ψn-3> + … + En <

€ 

ψJ
0|ψ0>. 
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As long as the zeroth-order energy 

€ 

EJ
0  is not degenerate with E0 (or, that the zeroth-

order states have been chosen as discussed earlier to cause there to no contribution to ψn 

from such degenerate states), the above equation can be solved for the expansion 

coefficients <

€ 

ψJ
0|ψn>, which then define ψn. 

The RSPT equations can be solved recursively to obtain even high-order energy and 

wave function corrections: 

1. ψ0 and E0 and V are used to determine E1 and ψ1 as outlined above, 

2. E2 is determined from <ψ0|V|ψn-1> = En with n = 2, and the expansion coefficients of 

ψ2   {<

€ 

ψJ
0|ψ2>} are determined from the above equation with n = 2, 

3. E3 (and higher En) are then determined from <ψ0|V|ψn-1> = En and the expansion 

coefficients of ψ2 {<

€ 

ψJ
0|ψ2>} are determined from the above equation with n = 2. 

4. This process can then be continued to higher and higher order.  

  Although modern quantum mechanics uses high-order perturbation theory in 

some cases, much of what the student needs to know is contained in the first- and 

second- order results to which I will therefore restrict our further attention. I recommend 

that students have in memory (their own brain, not a computer) the equations for E1, E2, 

and ψ1 so they can make use of them even in qualitative applications of perturbation 

theory as we will discuss later in this Chapter.  But, first, let’s consider an example 

problem that illustrates how perturbation theory is used in a more quantitative manner. 

 

4.1.1 An Example Problem 

 

As we discussed earlier, an electron moving in a quasi-linear conjugated bond 

framework can be modeled as a particle in a box.  An externally applied electric field of 

strength ε interacts with the electron in a fashion that can described by adding the 

perturbation V = eε





x - 
L
2    to the zeroth-order Hamiltonian. Here, x is the position of 

the electron in the box, e is the electron's charge, and L is the length of the box. The 

perturbation potential varies in a linear fashion across the box, so it acts to pull the 

electron to one side of the box. 
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 First, we will compute the first-order correction to the energy of the n=1 state 

and the first-order wave function for the n=1 state.  In the wave function calculation, we 

will only compute the contribution to ψ made by ψ0
2 (this is just an approximation to 

keep things simple in this example).  Let me now do all the steps needed to solve this 

part of the problem. Try to make sure you can do the algebra, but also make sure you 

understand how we are using the first-order perturbation equations. 

The zeroth-order wave functions and energies are given by 

 

€ 

ψn
0= 

€ 

2
L
 

 
 
 

 
 

1
2
Sin

€ 

nπx
L

 

 
 

 

 
 , and 

 

      

€ 

En
0  = 

  

€ 


2π 2n2

2mL2
, 

 

and the perturbation is 

 

     V = eε





x - 
L
2   . 

 

The first-order correction to the energy for the state having n = 1 and denote ψ0 is 

 

  E1

€ 

= 

€ 

ψ 0 |V |ψ 0 = 

€ 

ψ 0 | eε x − L
2

 

 
 

 

 
 |ψ 0  

 

         = 

€ 

2
L
 

 
 
 

 
 Sin2 πx

L
 

 
 

 

 
 eε x −

L
2

 

 
 

 

 
 dx

0

L

∫  

          

= 

€ 

2eε
L

 

 
 

 

 
 Sin2 πx

L
 

 
 

 

 
 xdx

0

L

∫ - 

€ 

2eε
L

 

 
 

 

 
 
L
2

Sin2 πx
L

 

 
 

 

 
 dx

0

L

∫  

 

The first integral can be evaluated using the following identity with a = 
π
L : 
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€ 

Sin2 ax( )xdx
0

L

∫ = 
x2

4   - 

€ 

xSin(2ax)
4a

- 

€ 

Cos(2ax)
8a2

L = 
L2

4   

 

The second integral can be evaluated using the following identity with θ = 
πx
L    

and dθ = 

€ 

π
L

dx : 

 

  

€ 

Sin2 πx
L

 

 
 

 

 
 dx

0

L

∫ = 

€ 

L
π

Sin2θdθ
0

π

∫  

 

€ 

Sin2θdθ
0

π

∫ = -
1
4 Sin(2θ) + 

θ
2 

π

0
  = 
π
2 . 

 

Making all of these appropriate substitutions we obtain: 

 

 

  E1 = 

€ 

2eε
L

 

 
 

 

 
 
L2

4
−
L
2
L
π
π
2

 

 
 

 

 
 = 0. 

 

This result, that the first-order correction to the energy vanishes, could have been 

foreseen. In the expression for E1 = 

€ 

ψ 0 |V |ψ 0 , the product ψ0*ψ0 is an even function 

under reflection of x through the midpoint x = L/2; in fact, this is true for all of the 

particle-in-a-box wave functions. On the other hand, the perturbation V = eε 

€ 

x − L
2

 

 
 

 

 
 is 

an odd function under reflection through x = L/2. Thus, the integral 

€ 

ψ 0 |V |ψ 0  must 

vanish as its integrand is an odd function. This simple example illustrates how one can 

use symmetry to tell ahead of time whether the integrals 

€ 

ψ 0 |V |ψ 0  and 

€ 

ψJ
0 |V |ψ 0  

contributing to the first-order and higher-order energies and wave functions will vanish.  

The contribution to the first-order wave function made by the n = 2 state is given by 
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€ 

ψ1

€ 

= 

€ 

ψ 0 | eε x − L
2

 

 
 

 

 
 |ψ2

0 ψ2
0

E 0 − E2
0  

 

= 

  

€ 

2
L

< sin(πx /L) | (eε(x − L /2) | sin(2πx /L) >ψ2
0


2π 2

2mL2
−

2π 222

2mL2

 

 

The two integrals in the numerator involve 

 

€ 

xSin 2πx
L

 

 
 

 

 
 Sin

πx
L

 

 
 

 

 
 dx

0

L

∫  

  

and 

€ 

Sin 2πx
L

 

 
 

 

 
 Sin

πx
L

 

 
 

 

 
 dx

0

L

∫  

 

Using the integral identities 

 

€ 

xCos(ax)dx∫ = 
1
a2 Cos(ax) + 

x
a Sin(ax) 

and 

 

€ 

Cos(ax)dx∫ = 
1
a  Sin(ax),  

 

we obtain the following: 

 

€ 

Sin 2πx
L

 

 
 

 

 
 Sin

πx
L

 

 
 

 

 
 dx

0

L

∫ = 

€ 

1
2

Cos πx
L

 

 
 

 

 
 dx

0

L

∫ − Cos 3πx
L

 

 
 

 

 
 dx

0

L

∫
 

 
 

 

 
  

         

= 

€ 

1
2
L
π
Sin πx

L
 

 
 

 

 
 L −

L
3π

Sin 3πx
L

 

 
 

 

 
 L

 

 
 

 

 
 = 0 
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and 

€ 

xSin 2πx
L

 

 
 

 

 
 Sin

πx
L

 

 
 

 

 
 dx

0

L

∫ = 

€ 

1
2

xCos πx
L

 

 
 

 

 
 dx

0

L

∫ − xCos 3πx
L

 

 
 

 

 
 dx

0

L

∫
 

 
 

 

 
  

 

= 

€ 

1
2

L2

π 2 Cos
πx
L

 

 
 

 

 
 +

Lx
π
Sin πx

L
 

 
 

 

 
 

 

 
 

 

 
 
L −

L2

9π 2 Cos
3πx
L

 

 
 

 

 
 +

Lx
3π

Sin 3πx
L

 

 
 

 

 
 

 

 
 

 

 
 
L

 

 
 

 

 
  

 

= 

€ 

−2L2

2π 2 - 

€ 

−2L2

18π 2 = 

€ 

L2

9π 2 - 

€ 

L2

π 2 = -

€ 

8L2

9π 2 . 

 

Making all of these appropriate substitutions we obtain: 

 

 

  

€ 

ψ1 =
32mL3eε
272π 4

2
L
sin(2πx /L) 

 

for the first-order wave function (actually, only the n = 2 contribution). So, the wave 

function through first order (i.e., the sum of the zeorth- and first-order pieces) is 

 

  

€ 

ψ 0 +ψ1 =
2
L
sin(πx /L) +

32mL3eε
272π 4

2
L
sin(2πx /L). 

 

In Fig. 4.1 we show the n = 1 and n = 2 zeroth-order functions as well as the 

superposition function formed when the zeroth-order n = 1 and first-order n = 1 

functions combine. 
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Figure 4.1 n = 1 (blue) and n= 2 (red) particle-in-a-box zeroth-order functions (left) and 

the n = 1 perturbed function through first order (right) arising from the electric field 

polarization.  

 

Clearly, the external electric field acts to polarize the n = 1 wave function in a manner 

that moves its probability density toward the x > L/2 side of the box. The degree of 

polarization will depend on the strength of the applied electric field. 

For such a polarized superposition wave function, there should be a net dipole moment 

induced in the system. We can evaluate this dipole moment by computing the 

expectation value of the dipole moment operator: 

 

µinduced = - e

€ 

ψ* x − L
2

 

 
 

 

 
 ψdx∫  

 

 

with 

€ 

ψ  being the sum of our zeroth- and first-order wave functions. In computing this 

integral, we neglect the term proportional to ε2 because we are interested in only the 

term linear in ε because this is what gives the dipole moment. Again, allow me to do the 

algebra and see if you can follow. 

 

µinduced = - e

€ 

ψ* x − L
2

 

 
 

 

 
 ψdx∫ ,   

 

where,  
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€ 

ψ  = 

€ 

ψ 0 +ψ1( ) . 

 

µinduced = - e

€ 

ψ 0 +ψ1( )
*
x − L

2
 

 
 

 

 
 ψ 0 +ψ1( )dx

0

L

∫  

     = -e

€ 

ψ 0* x − L
2

 

 
 

 

 
 ψ 0dx

0

L

∫ - e

€ 

ψ1* x − L
2

 

 
 

 

 
 ψ 0dx

0

L

∫  

- e

€ 

ψ 0* x − L
2

 

 
 

 

 
 ψ1dx

0

L

∫ - e

€ 

ψ1* x − L
2

 

 
 

 

 
 ψ1dx

0

L

∫ . 

 

The first integral is zero (we discussed this earlier when we used symmetry to explain 

why this vanishes). The fourth integral is neglected since it is proportional to ε2 and we 

are interested in obtaining an expression for how the dipole varies linearly with ε.  The 

second and third integrals are identical and can be combined to give: 

 

µinduced = -2e

€ 

ψ 0* x − L
2

 

 
 

 

 
 ψ1dx

0

L

∫  

Substituting our earlier expressions for  

 

€ 

ψ 0 =
2
L
sin(πx /L)  

 

and  

 

  

€ 

ψ1 =
32mL3eε
272π 4

2
L
sin(2πx /L) 

we obtain: 

 

µinduced = -2e
  

€ 

32mL3eε
272π 4

2
L
 

 
 
 

 
 Sin πx

L
 

 
 

 

 
 x −

L
2

 

 
 

 

 
 Sin

2πx
L

 

 
 

 

 
 dx

0

L

∫  
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These integrals are familiar from what we did to compute 

€ 

ψ1; doing them we finally 

obtain: 

µinduced = -2e
  

€ 

32mL3eε
272π 4

2
L
 

 
 
 

 
 
−8L2

9π 2

 

 
 

 

 
  = 

  

€ 

mL4e2ε

2π 6

210

35
 

 

Now. Let’s compute the polarizability, α, of the electron in the n=1 state of the box, and 

try to understand physically why α should depend as it does upon the length of the box 

L.  To compute the polarizability, we need to know that α = 
∂µ
∂ε 




ε=0

 
 . Using our 

induced moment result above, we then find 

 

α = 

€ 

∂µ
∂ε

 

 
 

 

 
 
ε= 0

= 
  

€ 

mL4e2


2π 6

210

35
 

 

Notice that this finding suggests that the larger the box (i.e., the length of the conjugated 

molecule), the more polarizable the electron density. This result also suggests that the 

polarizability of conjugated polyenes should vary non-linearly with the length of the 

conjugated chain.  

 

4.1.2 Other Examples 

 Let’s consider a few more examples of how perturbation theory is used in 

chemistry, either quantitatively (i.e., to actually compute changes in energies and wave 

functions) or qualitatively (i.e., to interpret or anticipate how changes might alter 

energies or other properties).  

1. The Stark effect 

 When a molecule is exposed to an electric field E, its electrons and nuclei 

experience a perturbation  

 

V= E •( e 

€ 

ZnRn
n
∑   - e 

€ 

ri
i
∑ ) 
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where Zn is the charge of the nth nucleus whose position is Rn, ri is the position of the ith 

electron, and e is the unit of charge. The effect of this perturbation on the energies is 

termed the Stark effect. The first-order change to the energy of this molecule is 

evaluated by calculating  

 

  

€ 

E1 =<ψ* |V |ψ >= E• <ψ | e ZnRn − e ri |ψ >
i
∑

n
∑  

 

where ψ is the unperturbed wave function of the molecule (i.e., the wave function in the 

absence of the electric field). The quantity inside the integral is the electric dipole 

operator, so this integral is the dipole moment of the molecule in the absence of the 

field. For species that possess no dipole moment (e.g., non-degenerate states of atoms 

and centro-symmetric molecules), this first-order energy vanishes. It vanishes in the two 

specific cases mentioned because ψ is either even or odd under the inversion symmetry, 

but the product ψ∗ψ is even, and the dipole operator is odd, so the integrand is odd and 

thus the integral vanishes. 

  If one is dealing with a degenerate state of a centro-symmetric system, 

things are different. For example, the 2s and 2p states of the hydrogen atom are 

degenerate, so, to apply perturbation theory one has to choose specific combinations that 

diagonalize the perturbation. This means one needs to first form the 2x2 matrix 

 

€ 

< 2s |V | 2s > < 2s |V | 2pz >

< 2pz |V | 2s > < 2pz |V | 2pz >

 

 
 

 

 
  

 

where z is taken to be the direction of the electric field. The diagonal elements of this 

matrix vanish due to parity symmetry, so the two eigenvalues are equal to 

 

€ 

E±
1 = ± < 2s |V | 2pz > . 

 

These are the two first-order (because they are linear in V and thus linear in   

€ 

E ) energies. 

So, in such degenerate cases, one can obtain linear Stark effects. The two corrected 
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zeroth-order wave functions corresponding to these two shifted energies are 

 

  

€ 

ψ±
0 =

1
2
[2s  2pz ] 

 

and correspond to orbitals polarized into or away from the electric field.  

  The Stark effect example offers a good chance to explain a fundamental 

problem with applying perturbation theory. One of the basic assumptions of perturbation 

theory is that the unperturbed and perturbed Hamiltonians are both bounded from below 

(i.e., have a discrete lowest eigenvalues) and allow each eigenvalue of the unperturbed 

Hamiltonian to be connected to a unique eigenvalue of the perturbed Hamiltonian. 

Considering the example just discussed, we can see that these assumptions are not met 

for the Stark perturbation. 

 Consider the potential that an electron experiences within an atom or 

molecule close to a nucleus of charge Z. It is of the form (in atomic units where the 

energy is given in Hartrees (1 H = 27.21 eV) and distances in Bohr units (1 Bohr = 0.529 

Å)) 

 

  

€ 

V (r,θ,φ) = −
Z
r
− eErcosθ  

 

where the first term is the Coulomb potential acting to attract the electron to the nucleus  

and the second is the electron-field potential assuming the field is directed along the z-

direction. In Fig. 4.2 a we show this potential for a given value of the angle θ.  
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Figure 4.2 a Potential experienced by valence electron showing attraction to a nucleus 

located at the origin (the deep well) and the potential due to the applied electric field. 

 

 Along directions for which cosθ is negative (to the right in Fig. 4.2 a), this 

potential becomes large and positive as the distance r of the electron from the nucleus 

increases; for bound states such as the 2s and 2p states discussed earlier, such regions 

are classically forbidden and the wave function exponentially decays in this direction. 

However, in directions along which cosθ is positive, the potential is negative and 

strongly attractive for small-r (i.e., near the nucleus), then passes through a maximum 

(e.g., near x = -2 in Fig. 4.2 a) at 

 

  

€ 

rmax =
Z

eE cosθ
 

 

where 

 

  

€ 

V (rmax ) = −2 eEZ cosθ  

 

(ca. – 1 eV in Fig. 4.2 a) and then decreases monotonically as r increases. In fact, this 

potential approaches -∞ as r approaches ∞ as we see in the left portion of Fig. 4. 2 a.  
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 The bottom line is that the total potential with the electric field present 

violates the assumptions on which perturbation theory is based. However, it turns out 

that perturbation theory can be used in such cases under certain conditions. For example 

as applied to the Stark effect for the degenerate 2s and 2p levels of a hydrogenic atom 

(i.e., a one-electron system with nuclear charge Z), if the energy of the 2s and 2p states 

lies far below the maximum in the potential V(rmax), perturbation theory can be used. We 

know the energies of hydrogenic ions vary with Z and with the principal quantum 

number n as 

 

€ 

En (Z) =
−13.6eV
n2Z 2

=
−1

2n2Z 2
au . 

 

So, as long as  

 

  

€ 

−1
2n2Z 2

<< −2 eEZ cosθ  

 

the zeroth-order energy of the state will like below the barrier on the potential surface. 

Because the wave function can penetrate this barrier, this state will no longer be a true 

bound state; it will be a metastable resonance state (recall, we studied such states in 

Chapter 1 where we learned about tunneling). However, if the zeroth-order energy lies 

far below the barrier, the extent of tunneling through the barrier will be small, so the 

state will have a long lifetime. In such cases, we can use perturbation theory to describe 

the effects of the applied electric field on the energies and wave functions of such 

metastable states, but we must realize that we are only allowed to do so in the limit of 

weak fields and for states that lie significantly below the barrier. In this case, 

perturbation theory describes the changes in the energy and wave function in regions of 

space where the zeroth-order wave function is bound, but does not describe at all the 

asymptotic part of the wave function where the electron is unbound.  

  Another example of Stark effects in degenerate cases arises when 

considering how polar diatomic molecules’ rotational energies are altered by an 

electric field. The zeroth-order wave functions appropriate to such cases are given by 
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€ 

ψ =YJ ,M (θ,φ)χv (R)ψe (r |R)  

 

where the spherical harmonic 

€ 

YJ ,M (θ,φ)  is the rotational wave function, 

€ 

χv (R)  is the 

vibrational function for level v, and 

€ 

ψe (r |R)  is the electronic wave function. The 

diagonal elements of the electric-dipole operator 

 

€ 

<YJ ,M (θ,φ)χv (R)ψe (r |R) |V |YJ ,M (θ,φ)χv (R)ψe (r |R) >  

 

vanish because the vibrationally averaged dipole moment, which arises as  

 

€ 

< µ >=< χv (R)ψe (r |R) | e ZnRn − e ri
i
∑

n
∑ | χv (R)ψe (r |R) >  

 

is a vector quantity whose component along the electric field   

€ 

E  is <µ>cos(θ) (again 

taking the field to lie along the z-direction) . Thinking of cos(θ) as x,  so sin(θ) dθ is dx, 

the integrals 

 

€ 

<YJ ,M (θ,φ) | cosθ |YJ ,M (θ,φ) >= YJ ,M
* (θ,φ)cosθYJ ,M (θ,φ)sinθdθdφ = YJ ,M

* (θ,φ)xYJ ,M (θ,φ)dxdφ = 0∫∫
 

 

because |YJ,M|2 is an even function of x (i.e. ,of cos(θ)). Because the angular dependence 

of the perturbation (i.e., cosθ) has no φ-dependence, matrix elements of the form  

 

€ 

YJ ,M
* (θ,φ)cosθYJ ,M ' (θ,φ)sinθdθdφ = 0∫  

 

also vanish. This means that if one were to form the (2J+1)x(2J+1) matrix 

representation of V for the 2J+1 degenerate states YJ,M belonging to a given J, all of its  

elements would be zero. Thus the rotational energies of polar diatomic (or rigid linear 

polyatomic) molecules have no first-order Stark splittings. 

 There will, however, be second-order Stark splittings, in which case we need to  
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examine the terms that arise in the formula 

 

€ 

E 2 =
|<ψ 0 |V |ψJ

0 >|2

E 0 − EJ
0

J
∑ . 

 

For a zeroth-order state YJ,M, only certain other zeroth-order states will have non-

vanishing coupling matrix elements 

€ 

<ψ 0 |V |ψJ
0 > . These non-zero integrals are 

governed by 

€ 

<YJ ,M | cosθ |YJ ',M ' >, which can be shown to be 

 

€ 

<YJ ,M | cosθ |YJ ',M ' >= { (J +1)2 −M 2

(2J +1)(2J + 3)
forJ '= J +1; J 2 −M 2

(2J −1)(2J +1)
forJ'= J −1}δM ,M '; 

 

of course, if J = 0, the term J’ = J-1 does not occur. The limitation that M must equal M’ 

arises, as above, because the perturbation contains no terms dependent on the variable φ. 

The limitation that J’ = J ± 1 comes from a combination of three conditions 

(i) angular momentum coupling, which you learned about in Chapter 2, tells us that 

cosθ, which happens to be proportional to Y1,0(θ,φ), can couple to YJ,M to generate terms 

having J+1, J, or J-1 for their J2 quantum number but only M for their Jz quantum 

number, 

(ii) the J+1, J, and J-1 factors arising from the product cosθ YJ,M must match YJ’,M’ for the 

integral not to vanish because <YJ,M|YJ’,M’> = δJ,J’ δM,M’, 

(iii) finally, the J = J’ terms will vanish because of the inversion symmetry (cosθ is odd 

under inversion but |YJ,M|2 is even).  

 Using the fact that the perturbation is   

€ 

E  <µ>cos(θ), these two non-zero 

matrix elements can be used to express the second-order energy for the J,M level as 

 

  

€ 

E = E 2 < µ >2 {

(J +1)2 −M 2

(2J +1)(2J + 3)
−2B(J +1)

+

J 2 −M 2

(2J −1)(2J +1)
2BJ

}  

 

where h is Planck’s constant and B is the rotational constant for the molecule 
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€ 

B =
h

8π 2µre
2  

 

for a diatomic molecule of reduced mass µ and equilibrium bond length re.  

 Before moving on to another example, it is useful to point out some 

common threads that occur in many applications of perturbation theory and that will also 

be common to variational calculations that we discuss later in this Chapter. Once one has 

identified the specific zeroth-order state ψ0 of interest, one proceeds as follows: 

(i) The first-order energy E1 = < ψ0|V| ψ0> is evaluated. In doing so, one should first 

make use of any symmetry (point group symmetry is treated later in this Chapter) such 

as inversion, angular momentum, spin, etc., to determine whether this expectation value 

will vanish by symmetry, in which case, we don’t bother to consider this matrix element 

any more. We used this earlier when considering <2s|cosθ|2s>, <2pσ|cosθ|2pσ>, and 

<YJ,M|cosθ|YJ,M> to conclude that certain first-order energies are zero. 

(ii). If E1 vanishes (so the lowest-order effect is in second order) or if we want to 

examine higher-order corrections, we consider evaluating E2. Before doing so explicitly, 

we think about whether symmetry will limit the matrix elements < ψ0|V ψ0
n> entering 

into the expression for E2. For example, in the case just studied, we saw that only other 

zeroth-order states having J’ = J +1 or J ‘ = J-1 gave non-vanishing matrix elements. In 

addition, because E2 contains energy denominators (E0-E0
n), we may choose to limit our 

calculation to those other zeroth-order states whose energies are close to our state of 

interest; this assumes that such states will contribute a dominant amount to the sum 

 

€ 

|<ψn
0 |V |ψ 0 >|2

E 0 − En
0

n
∑ . 

 

You will encounter many times when reading literature articles in which perturbation 

theory is employed situations in which researchers have focused attention on zeroth-

order states that are close in energy to the state of interest and that have the correct 

symmetry to couple strongly (i.e., have substantial < ψ0|V ψ0
n>) to that state.  
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2. Electron-electron Coulomb repulsion 

 In one of the most elementary pictures of atomic electronic structure, one uses 

nuclear charge screening concepts to partially account for electron-electron interactions. 

For example, in 1s22s1 Li, one might posit a zeroth-order wave function consisting of a 

product  

 

€ 

ψ = φ1s(r1)α(1)φ1s(r2)β(2)φ2s(r3)α(3)  

 

in which two electrons occupy a 1s orbital and one electron occupies a 2s orbital. To 

find a reasonable form for the radial parts of these two orbitals, one could express each 

of them as a linear combination of (i) one orbital having hydrogenic 1s form with a 

nuclear charge of 3 and (ii) a second orbital of 2s form but with a nuclear charge of 1 (to 

account for the screening of the Z = 3 nucleus by the two inner-shell 1s electrons) 

 

€ 

φi(r) = Ciχ1s,Z=1(r) + Diχ2s,Z= 3(r) 

 

where the index i labels the 1s and 2s orbitals to be determined. Next, one could 

determine the Ci and Di expansion coefficients by requiring the φi to be approximate 

eigenfunctions of the Hamiltonian 

 

€ 

h = −1/2∇2 −
3
r

 

 

that would be appropriate for an electron attracted to the Li nucleus but not experiencing 

any repulsions with other electrons. This would result in the following equation for the 

expansion coefficients: 

 

€ 

< χ1s,Z=1(r) |−1/2∇
2 −
3
r
| χ1s,Z=1(r) > < χ1s,Z=1(r) |−1/2∇

2 −
3
r
| χ2s,Z= 3(r) >

< χ1s,Z=1(r) |−1/2∇
2 −
3
r
| χ2s,Z= 3(r) > < χ2s,Z= 3(r) |−1/2∇

2 −
3
r
| χ2s,Z= 3(r) >

 

 

 
 
 

 

 

 
 
 

C
D
 

 
 
 

 
 = 
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€ 

< χ1s,Z=1(r) | χ1s,Z=1(r) > < χ1s,Z=1(r) | χ2s,Z= 3(r) >

< χ1s,Z=1(r) | χ2s,Z= 3(r) > < χ2s,Z= 3(r) | χ2s,Z= 3(r) >

 

 
 

 

 
 
C
D
 

 
 
 

 
 . 

 

This 2x2 matrix eigenvalue problem can be solved for the Ci and Di coefficients and for 

the energies Ei  of the 1s and 2s orbitals. The lower-energy solution will have |C| > |D|, 

and will be this model’s description of the 1s orbital. The higher-energy solution will 

have |D| > |C| and is the approximation to the 2s orbital. 

 Using these 1s and 2s orbitals and the 3-electron wave function they form 

 

€ 

ψ = φ1s(r1)α(1)φ1s(r2)β(2)φ2s(r3)α(3)  

 

as a zeroth-order approximation, how do we then proceed to apply perturbation theory? 

The full three-electron Hamiltonian 

 

€ 

H = [−1/2∇ i
2

i=1

3

∑ −
3
ri
]+ 1

ri, ji< j=1

3

∑  

 

can be decomposed into a zeroth-order part 

 

€ 

H 0 = [−1/2∇ i
2

i=1

3

∑ −
3
ri
] 

 

and a perturbation 

 

€ 

V =
1
ri, ji< j=1

3

∑ . 

 

The zeroth-order energy of the wave function  

 

€ 

ψ = φ1s(r1)α(1)φ1s(r2)β(2)φ2s(r3)α(3)  
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is  

 

€ 

E 0 = 2E1s + E2s 

 

where each of the Ens are the energies obtained by solving the 2x2 matrix eigenvalue 

equation shown earlier. The first-order energy of this state can be written as 

 

€ 

E1 =< φ1s(r1)α(1)φ1s(r2)β(2)φ2s(r3)α(3) |V |φ1s(r1)α(1)φ1s(r2)β(2)φ2s(r3)α(3) >= J1s,1s + 2J1s,2s
 

 

with the Coulomb interaction integrals being defined as 

 

€ 

Ja,b = φa
* (r)φa (r)

1
| r − r' |∫ φb

* (r)φb (r)drdr' . 

 

To carry out the 3-electron integral appearing in E1, one proceeds as follows. For the 

integral 

 

€ 

[φ1s(r1)α(1)φ1s(r2)β(2)φ2s(r3)α(3)]*∫ 1
r1,2
φ1s(r1)α(1)φ1s(r2)β(2)φ2s(r3)α(3)d1d2d3 

 

one integrates over the 3 spin variables using <α| α>=1, < α| β>=0 and < β| β>=1) and 

then integrates over the coordinate of the third electron using <φ2s|φ2s>=1 to obtain 

 

€ 

[φ1s(r1)φ1s(r2)]*∫ 1
r1,2
φ1s(r1)φ1s(r2)d1d2  

 

which is J1s,1s. The two J1s,2s integrals arise when carrying out similar integration for the 

terms arising from (1/r1,3 ) and (1/r2,3). 

 So, through first order, the energy of the Li atom at this level of treatment is 

given by  
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€ 

E 0 + E1 = 2E1s + E2s + J1s,1s + 2J1s,2s . 

 

The factor 

€ 

2E1s + E2s contains the contributions from the kinetic energy and electron-

nuclear Coulomb potential. The 

€ 

J1s,1s + 2J1s,2s terms describe the Coulombic repulsions 

among the three electrons. Each of the Coulomb integrals Ji,j can be interpreted as being 

equal to the Coulombic interaction between electrons (one at location r; the other at r’) 

averaged over the positions of these two electrons with their spatial probability 

distributions being given by |φi(r)|2 and |φj(r’)|2, respectively.  

 Although the example just considered is rather primitive, it introduces a 

point of view that characterizes one of the most commonly employed models for 

treating atomic and molecular electronic structure- the Hartree-Fock (HF) mean-field 

model, which we will discuss more in Chapter 6. In the HF model, one uses as a zeroth-

order Hamiltonian 

 

€ 

H 0 = [−1/2∇ i
2

i=1

3

∑ −
3
ri

+VHF (ri)] 

 

consisting of a sum of one-electron terms containing the kinetic energy, the Coulomb 

attraction to the nucleus (I use the Li atom as an example here), and a potential VHF(ri). 

This potential, which is written in terms of Coulomb integrals similar to those we 

discussed earlier as well as so-called exchange integrals that we will discuss in Chapter 

6, is designed to approximate the interaction of an electron at location ri with the other 

electrons in the atom or molecule. Because H0 is one-electron additive, its 

eigenfunctions consist of products of eigenfunctions of the operator 

 

€ 

h0 = −1/2∇2 −
3
r

+VHF (r). 

 

 VHF(ri) offers an approximation to the true 1/ri,j Coulomb interactions expressed in 

terms of a “smeared-out” electron distribution interacting with the electron at ri. 
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Perturbation theory is then used to treat the effect of the perturbation 

 

€ 

V =
1
ri, j

− VHF (ri)
i=1

N

∑
i< j=1

N

∑  

 

on the zeroth-order states. We say that the perturbation, often called the fluctuation 

potential, corrects for the difference between the instantaneous Coulomb interactions 

among the N electrons and the mean-field (average) interactions.  

 

4.2. The Variational Method 

 

 Let us now turn to the other method that is used to solve Schrödinger equations 

approximately, the variational method. In this approach, one must again have some 

reasonable wave function ψ0 that is used to approximate the true wave function. Within 

this approximate wave function, one imbeds one or more variables {αJ} that one 

subsequently varies to achieve a minimum in the energy of ψ0 computed as an 

expectation value of the true Hamiltonian H: 

 

E({αJ}) = <ψ0| H | ψ0>/<ψ0 | ψ0>. 

 

The optimal values of the αJ parameters are determined by making  

 

dE/dαJ = 0 

 

To achieve the desired energy minimum (n.b., we also should verify that the second 

derivative matrix (∂2E/∂αJ∂αL) has all positive eigenvalues, otherwise one may not have 

found the minimum). 

 The theoretical basis underlying the variational method can be understood 

through the following derivation. Suppose that someone knew the exact eigenstates (i.e., 

true ψK and true EK) of the true Hamiltonian H. These states obey 
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H ψK = EK ψK. 

 

Because these true states form a complete set (it can be shown that the eigenfunctions of 

all the Hamiltonian operators we ever encounter have this property), our so-called “trial 

wave function” ψ0 can, in principle, be expanded in terms of these ψK: 

 

ψ0  = ΣK CK ψK. 

 

Before proceeding further, allow me to overcome one likely misconception. What I am 

going through now is only a derivation of the working formula of the variational 

method. The final formula will not require us to ever know the exact ψK or the exact EK, 

but we are allowed to use them as tools in our derivation because we know they exist 

even if we never know them. 

 With the above expansion of our trial function in terms of the exact 

eigenfunctions, let us now substitute this into the quantity <ψ0| H | ψ0>/<ψ0 | ψ0> that the 

varitational method instructs us to compute: 

 

E = <ψ0| H | ψ0>/<ψ0 | ψ0> = <ΣK CK ψK | H | ΣL CL ψL>/<ΣK CK ψK|ΣL CL ψL>. 

 

Using the fact that the ψK obey HψK = EKψK and that the ψK are orthonormal (I hope you 

remember this property of solutions to all Schrödinger equations that we discussed 

earlier) 

 

<ψK|ψL> = δK.L 

 

the above expression reduces to 

 

E = ΣΚ < CK ψK | H | CK ψK>/(ΣK< CK ψK| CK ψK>) = ΣK |CK|2 EK/ΣK|CK|2. 
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One of the basic properties of the kind of Hamiltonia we encounter is that they have a 

lowest-energy state. Sometimes we say they are bounded from below, which means their 

energy states do not continue all the way to minus infinity. There are systems for which 

this is not the case (we saw one earlier when studying the Stark effect), but we will now 

assume that we are not dealing with such systems. This allows us to introduce the 

inequality EK ≥ E0 which says that all of the energies are higher than or equal to the 

energy of the lowest state which we denote E0. Introducing this inequality into the above 

expression gives 

 

E ≥ ΣK |CK|2 E0 /ΣK|CK|2 = E0. 

 

This means that the variational energy, computed as <ψ0| H | ψ0>/<ψ0 | ψ0> will lie 

above the true ground-state energy no matter what trial function ψ0 we use.  

 The significance of the above result that E ≥ E0 is as follows. We are allowed to 

imbed into our trial wave function ψ0 parameters that we can vary to make E, computed 

as <ψ0| H | ψ0>/<ψ0 | ψ0> as low as possible because we know that we can never make  

<ψ0| H | ψ0>/<ψ0 | ψ0> lower than the true ground-state energy. The philosophy then is 

to vary the parameters in ψ0 to render E as low as possible, because the closer E is to E0 

the “better” is our variational  wave function. Let me now demonstrate how the 

variational method is used in such a manner by solving an example problem. 

 

4.2.1 An Example Problem 

Suppose you are given a trial wave function of the form: 

 

   φ = 

€ 

Z
e 3

πa03
exp

€ 

−Zer1
a0

 

 
 

 

 
 exp

€ 

−Zer2
a0

 

 
 

 

 
  

 

to represent a two-electron ion of nuclear charge Z and suppose that you are lucky 

enough that I have already evaluated the <ψ0| H | ψ0>/<ψ0 | ψ0>  integral, which I’ll call 

W, for you and found 
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   W = 

€ 

Z
e 2
− 2ZZe +

5
8
Ze

 

 
 

 

 
 
e2

a0
. 

 

Now, let’s find the optimum value of the variational parameter Ze for an arbitrary 

nuclear charge Z by setting 
dW
dZe

  = 0 .  After finding the optimal value of Ze, we’ll then 

find the optimal energy by plugging this Ze into the above W expression. I’ll do the 

algebra and see if you can follow. 

 

W = 

€ 

Z
e 2
− 2ZZe +

5
8
Ze

 

 
 

 

 
 
e2

a0
 

 

€ 

dW
dZe

= 

€ 

2Ze − 2Z +
5
8

 

 
 

 

 
 
e2

a0
= 0 

2Ze - 2Z + 
5
8  = 0 

2Ze = 2Z - 
5
8  

Ze = Z - 
5
16  = Z - 0.3125 

 

(n.b., 0.3125 represents the shielding factor of one 1s electron to the other, reducing the 

optimal effective nuclear charge by this amount). 

Now, using this optimal Ze in our energy expression gives 

 

W = Ze

€ 

Ze − 2Z +
5
8

 

 
 

 

 
 
e2

a0
‘ 

W = 

€ 

Z − 5
16

 

 
 

 

 
 Z −

5
16

 

 
 

 

 
 − 2Z +

5
8

 

 
 

 

 
 
e2

a0
 

W = 

€ 

Z − 5
16

 

 
 

 

 
 −Z +

5
16

 

 
 

 

 
 
e2

a0
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W = -

€ 

Z − 5
16

 

 
 

 

 
 Z −

5
16

 

 
 

 

 
 
e2

a0
= -

€ 

Z − 5
16

 

 
 

 

 
 
2 e2

a0
 

 

= - (Z - 0.3125)2(27.21) eV 

 

(n.b., since a0 is the Bohr radius 0.529 Å, e2/a0 = 27.21 eV, or one atomic unit of energy). 

Is this energy any good? The total energies of some two-electron atoms and ions 

have been experimentally determined to be as shown in the Table below. 

Z = 1 H- -14.35 eV 

Z = 2 He -78.98 eV 

Z = 3 Li+ -198.02 eV 

Z = 4 Be+2 -371.5 eV 

Z = 5 B+3 -599.3 eV 

Z = 6 C+4 -881.6 eV 

Z = 7 N+5 -1218.3 eV 

Z = 8 O+6 -1609.5 eV 

 

Using our optimized expression for W, let’s now calculate the estimated total energies of 

each of these atoms and ions as well as the percent error in our estimate for each ion.   

 

Z Atom Experimental Calculated % Error 

Z = 1 H- -14.35 eV -12.86 eV 10.38% 

Z = 2 He -78.98 eV -77.46 eV 1.92% 

Z = 3 Li+ -198.02 eV -196.46 eV 0.79% 

Z = 4 Be+2 -371.5 eV -369.86 eV 0.44% 

Z = 5 B+3 -599.3 eV -597.66 eV 0.27% 

Z = 6 C+4 -881.6 eV -879.86 eV 0.19% 

Z = 7 N+5 -1218.3 eV -1216.48 eV 0.15% 

Z = 8 O+6 -1609.5 eV -1607.46 eV 0.13% 
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The energy errors are essentially constant over the range of Z, but produce a larger 

percentage error at small Z.  

In 1928, when quantum mechanics was quite young, it was not known whether 

the isolated, gas-phase hydride ion, H-, was stable with respect to loss of an electron to 

form a hydrogen atom.  Let’s compare our estimated total energy for H- to the ground 

state energy of a hydrogen atom and an isolated electron (which is known to be   

-13.60 eV). When we use our expression for W and take Z = 1, we obtain W = -12.86 

eV, which is greater than -13.6 eV (H + e-), so this simple variational calculation 

erroneously predicts H- to be unstable. More complicated variational treatments give a 

ground state energy of H- of -14.35 eV, in agreement with experiment and agreeing that 

H- is indeed stable with respect to electron detachment. 

 

4.2.2 Another Example 

 A widely used example of is provided by the so-called linear variational method. 

Here one expresses the trial wave function a linear combination of so-called basis 

functions {χj} 

 

€ 

ψ = C jχ j
j
∑ . 

 

Substituting this expansion into <ψ|H|ψ> and then making this quantity stationary with 

respect to variations in the Ci subject to the constraint that ψ remain normalized 

 

€ 

1=<ψ |ψ >= Ci
* < χ i |

j
∑ χ j > C j

i
∑  

 

gives 

  

€ 

< χ i |H | χ j > C j = E < χ i | χ j > C j
j
∑

j
∑ . 

 

This is a generalized matrix eigenvalue problem that we can write in matrix notation as 
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HC=ESC. 

 

It is called a generalized eigenvalue problem because of the appearance of the overlap 

matrix S on its right hand side.  

 This set of equations for the Cj coefficients can be made into a conventional 

eigenvalue problem as follows: 

1. The eigenvectors vk and eigenvalues sk of the overlap matrix are found by solving 

 

€ 

Si, jvk, j = skvk,i
j
∑  

 

All of the eigenvalues sk are positive because S is a positive-definite matrix. 

2. Next one forms the matrix S-1/2 whose elements are 

 

€ 

Si, j
−1/ 2 = vk,i

1
sk
vk, j

k
∑  

 

(another matrix S1/2 can be formed in a similar way replacing 

€ 

1
sk

  with 

€ 

sk ). 

3. One then multiplies the generalized eigenvalue equation on the left by S-1/2 to obtain 

 

S-1/2HC=E S-1/2SC. 

 

4. This equation is then rewritten, using S-1/2S = S1/2 and 1=S-1/2S1/2 as 

 

S-1/2H S-1/2 (S1/2C)=E (S1/2C). 

 

This is a conventional eigenvalue problem in which the matrix is S-1/2H S-1/2 and the 

eigenvectors are (S1/2C). 
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The net result is that one can form S-1/2H S-1/2 and then find its eigenvalues and 

eigenvectors. Its eigenvalues will be the same as those of the original generalized 

eigenvalue problem. Its eigenvectors (S1/2C) can be used to determine the eigenvectors C 

of the original problem by multiplying by S-1/2  

 

C= S-1/2 (S1/2C). 

 

 Although the derivation of the matrix eigenvalue equations resulting from the 

linear variational method was carried out as a means of minimizing <ψ|H|ψ>, it turns out 

that the solutions offer more than just an upper bound to the lowest true energy of the 

Hamiltonian. It can be shown that the nth eigenvalue of the matrix S-1/2H S-1/2 is an upper 

bound to the true energy of the nth state of the Hamiltonian. A consequence of this is that, 

between any two eigenvalues of the matrix S-1/2H S-1/2 there is at least one true energy of 

the Hamiltonian. This observation is often called the bracketing condition. The ability of 

linear variational methods to provide estimates to the ground- and excited-state energies 

from a single calculation is one of the main strengths of this approach. 

 

4.3 Point Group Symmetry 

 It is assumed that the reader has previously learned, in undergraduate inorganic 

or physical chemistry classes, how symmetry arises in molecular shapes and structures 

and what symmetry elements are (e.g., planes, axes of rotation, centers of inversion, 

etc.). For the reader who feels, after reading this material, that additional background is 

needed, the texts by Eyring, Walter, and Kimball or by Atkins and Friedman can be 

consulted. We review and teach here only that material that is of direct application to 

symmetry analysis of molecular orbitals and vibrations and rotations of molecules. We 

use a specific example, the ammonia molecule, to introduce and illustrate the important 

aspects of point group symmetry because this example contains most of the complexities 

that arise in any application of group theory to molecular problems. 

 

4.3.1 The C3v Symmetry Group of Ammonia - An Example 

 The ammonia molecule NH3 belongs, in its ground-state equilibrium geometry, 
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to the C3v point group.  Its symmetry operations consist of two C3 rotations, C3, C32  

(rotations by 120° and 240°, respectively about an axis passing through the nitrogen 

atom and lying perpendicular to the plane formed by the three hydrogen atoms), three 

vertical reflection operations, σv, σv', σv", and the identity operation.  Corresponding to 

these six operations are symmetry elements:  the three-fold rotation axis, C3 and the 

three symmetry planes σv, σv' and σv" that contain the three NH bonds and the z-axis 

(see Fig. 4.3). 

 

N

H2 H1

H3

C3-axis (z)

y-axis

x-axis
σv

σv''

σv'

 
 

Figure 4.3 Ammonia Molecule and its Symmetry Elements 

 

 These six symmetry operations form a mathematical group.  A group is defined 

as a set of objects satisfying four properties. 

 

1. A combination rule is defined through which two group elements are combined 

to give a result that we call the product.  The product of two elements in the 

group must also be a member of the group (i.e., the group is closed under the 

combination rule). 

 

2. One special member of the group, when combined with any other member of the 
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group, must leave the group member unchanged (i.e., the group contains an 

identity element). 

 

3. Every group member must have a reciprocal in the group.  When any group 

member is combined with its reciprocal, the product is the identity element. 

 

4. The associative law must hold when combining three group members (i.e., 

(AB)C must equal A(BC)). 

 

 The members of symmetry groups are symmetry operations; the combination 

rule is successive operation.  The identity element is the operation of doing nothing at 

all.  The group properties can be demonstrated by forming a multiplication table.  Let us 

label the rows of the table by the first operation and the columns by the second 

operation.  Note that this order is important because most groups are not commutative.  

The C3v  group multiplication table is as follows: 

 

 E C3 C32 σv σv' σv" Second 

operation 

E E C3 C32 σv σv' σv"  

C3 C3 C32 E σv' σv" σv  

C32 C32 E C3 σv" σv σv'  

σv σv σv" σv' E C32 C3  

σv' σv' σv σv" C3 E C32  

σv" σv" σv' σv C32 C3 E  

First 

operation 

       

 

Note the reflection plane labels do not move. That is, although we start with H1 in the σv 

plane, H2 in σv', and H3 in σv", if H1 moves due to the first symmetry operation, σv 

remains fixed and a different H atom lies in the σv plane. 
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4.3.2. Matrices as Group Representations 

 In using symmetry to help simplify molecular orbital (mo) or vibration/rotation 

energy-level identifications, the following strategy is followed: 

1. A set of M objects belonging to the constituent atoms (or molecular fragments, in a 

more general case) is introduced. These objects are the orbitals of the individual atoms 

(or of the fragments) in the mo case; they are unit vectors along the Cartesian x, y, and z 

directions located on each of the atoms, and representing displacements along each of 

these directions, in the vibration/rotation case. 

2. Symmetry tools are used to combine these M objects into M new objects each of 

which belongs to a specific symmetry of the point group. Because the Hamiltonian 

(electronic in the mo case and vibration/rotation in the latter case) commutes with the 

symmetry operations of the point group, the matrix representation of H within the 

symmetry-adapted basis will be "block diagonal". That is, objects of different symmetry 

will not interact; only interactions among those of the same symmetry need be 

considered. 

 

 To illustrate such symmetry adaptation, consider symmetry adapting the 2s 

orbital of N and the three 1s orbitals of the three H atoms. We begin by determining how 

these orbitals transform under the symmetry operations of the C3v point group.  The act 

of each of the six symmetry operations on the four atomic orbitals can be denoted as 

follows: 

  (SN,S1,S2,S3) 

€ 

E
→

 (SN,S1,S2,S3) 

    

€ 

C3

→
 (SN,S3,S1,S2) 

    

€ 

C3
2

→
 (SN,S2,S3,S1) 

    

€ 

σ v

→
 (SN,S1,S3,S2) 

    

€ 

σ v''

→
 (SN,S3,S2,S1) 
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€ 

σ v'

→
 (SN,S2,S1,S3) 

 

Here we are using the active view that a C3 rotation rotates the molecule by 120°.  The 

equivalent passive view is that the 1s basis functions are rotated -120°.  In the C3 

rotation, S3 ends up where S1 began, S1, ends up where S2 began and S2 ends up where 

S3 began.  

 

 These transformations can be thought of in terms of a matrix multiplying a 

vector with elements (SN,S1,S2,S3).  For example, if D(4) (C3) is the representation 

matrix giving the C3 transformation, then the above action of C3 on the four basis 

orbitals can be expressed as: 

 

D(4)(C3) 

€ 

SN
S1
S2
S3

 

 

 
 
 
 

 

 

 
 
 
 

= 

€ 

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 

 

 
 
 
 

 

 

 
 
 
 

€ 

SN
S1
S2
S3

 

 

 
 
 
 

 

 

 
 
 
 

= 

€ 

SN
S3
S1
S2

 

 

 
 
 
 

 

 

 
 
 
 

 

 

We can likewise write matrix representations for each of the symmetry operations of the 

C3v point group: 

 

D(4)(C32) =

€ 

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 

 

 
 
 
 

 

 

 
 
 
 

  D(4)(E) = 

€ 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

 

D(4)(σv) =

€ 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 

 

 
 
 
 

 

 

 
 
 
 

   D(4)(σv') = 

€ 

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
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D(4)(σv") = 

€ 

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

 

 

It is easy to verify that a C3 rotation followed by a σv reflection is equivalent to a σv' 

reflection alone.  In other words 

 

σv C3 = σv' ,      or 

€ 

S1

S2 S3

€ 

C3

→
 

€ 

S3

S1 S2

 

€ 

σ v

→
 

€ 

S3

S2 S1

 

 

Note that this same relationship is carried by the matrices: 

 

D(4)(σv) D(4)(C3) = 

€ 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 

 

 
 
 
 

 

 

 
 
 
 

€ 

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 

 

 
 
 
 

 

 

 
 
 
 

= 

€ 

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 

 

 
 
 
 

 

 

 
 
 
 

=D(4)(σv') 

 

Likewise we can verify that C3  σv = σv" directly and we can notice that the matrices 

also show the same identity: 

 

D(4)(C3) D(4)(σv) = 

€ 

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 

 

 
 
 
 

 

 

 
 
 
 

€ 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 

 

 
 
 
 

 

 

 
 
 
 

= 

€ 

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

=D(4)(σv"). 

 

In fact, one finds that the six matrices, D(4)(R), when multiplied together in all 36 

possible ways, obey the same multiplication table as did the six symmetry operations. 

We say the matrices form a representation of the group because the matrices have all the 

properties of the group.   
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4.3.3 Characters of Representations 

 One important property of a matrix is the sum of its diagonal elements which is 

called the trace of the matrix D and is denoted Tr(D): 

 

Tr(D) = 

€ 

Di,i
i
∑ = χ. 

So, χ is called the trace or character of the matrix.  In the above example 

 
χ(E) = 4 

χ(C3) = χ(C32) = 1 

χ(σv) = χ(σv') = χ(σv") = 2. 

 

The importance of the characters of the symmetry operations lies in the fact that they do 

not depend on the specific basis used to form the matrix. That is, they are invariant to a 

unitary or orthogonal transformation of the objects used to define the matrices. As a 

result, they contain information about the symmetry operation itself and about the space 

spanned by the set of objects. The significance of this observation for our symmetry 

adaptation process will become clear later. 

 Note that the characters of both rotations are the same as are the characters of all 

three reflections. Collections of operations having identical characters are called classes.  

Each operation in a class of operations has the same character as other members of the 

class. The character of a class depends on the space spanned by the basis of functions on 

which the symmetry operations act. 

 

4.3.4. Another Basis and Another Representation 

 Above we used (SN,S1,S2,S3) as a basis. If, alternatively, we use the one-

dimensional basis consisting of the 1s orbital on the N-atom, we obtain different 

characters, as we now demonstrate.  

 The act of the six symmetry operations on this SN can be represented as follows: 
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 SN 

€ 

E
→

 SN  SN 

€ 

C3

→
SN    SN 

€ 

C3
2

→
 SN; 

 SN 

€ 

σ v

→
 SN  SN 

€ 

σ v'

→
 SN SN  

€ 

σ v''

→
 SN. 

 

We can represent this group of operations in this basis by the one-dimensional set of 

matrices: 

 

 D(1) (E) = 1;  D(1) (C3) = 1;  D(1) (C32) = 1, 

 D(1) (σv) = 1;  D(1)(σv") = 1;  D(1) (σv') = 1. 

 

Again we have 

 

D(1) (σv) D(1) (C3) = 1 ⋅ 1 = D(1) (σv"), and 

D(1) (C3) D(1) (σv) = 1 ⋅ 1 = D(1) (σv'). 

 

These six 1x1 matrices form another representation of the group. In this basis, each 

character is equal to unity. The representation formed by allowing the six symmetry 

operations to act on the 1s N-atom orbital is clearly not the same as that formed when 

the same six operations acted on the (SN,S1,S2,S3) basis. We now need to learn how to 

further analyze the information content of a specific representation of the group formed 

when the symmetry operations act on any specific set of objects. 

 

 

4.3.5 Reducible and Irreducible Representations 

1. Reducible Representations 

 Note that every matrix in the four dimensional group representation labeled D(4) 

has the so-called block diagonal form 

 

1 0 0 0 
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0 A B C 

0 D E F 

0 G H I 

 

 

This means that these D(4) matrices are really a combination of two separate group 

representations (mathematically, it is called a direct sum representation). We say that 

D(4) is reducible into a one-dimensional representation D(1) and a three-dimensional 

representation formed by the 3x3 submatrices that we will call D(3).   

 

 

D(3)(E) = 

€ 

1 0 0
0 1 0
0 0 1

 

 

 
  

 

 

 
  
    D(3)(C3) = 

€ 

0 0 1
1 0 0
0 1 0

 

 

 
  

 

 

 
  
    D(3)(C32) = 

€ 

0 1 0
0 0 1
1 0 0

 

 

 
  

 

 

 
  
 

 

 

D(3)(σv) = 

€ 

1 0 0
0 0 1
0 1 0

 

 

 
  

 

 

 
  
    D(3)(σv') = 

€ 

0 0 1
0 1 0
1 0 0

 

 

 
  

 

 

 
  
   D(3)(σv") = 

€ 

0 1 0
1 0 0
0 0 1

 

 

 
  

 

 

 
  
 

 

 

The characters of D(3) are χ(E) = 3, χ(2C3) = 0, χ(3σv) = 1. Note that we would have 

obtained this D(3) representation directly if we had originally chosen to examine the 

basis (S1,S2,S3) alone; also note that these characters are equal to those of D(4) minus 

those of D(1).  

 

2. A Change in Basis 

 Now let us convert to a new basis that is a linear combination of the original 

S1,S2,S3 basis: 

 



 272 

T1 = S1 + S2 + S3 

 

T2 = 2S1 - S2 - S3 

 

T3 = S2 - S3 

 

(Don't worry about how I constructed T1, T2, and T3 yet.  As will be demonstrated later, 

we form them by using symmetry projection operators defined below). We determine 

how the "T" basis functions behave under the group operations by allowing the 

operations to act on the Sj and interpreting the results in terms of the Ti. In particular, 

 

(T1,T2 ,T3) 

€ 

σ v

→
 (T1,T2,-T3) (T1,T2,T3) 

€ 

E
→

 (T1,T2,T3) ; 

(T1,T2,T3) 

€ 

σ v'

→
 (S3+S2+S1, 2S3-S2-S1,S2-S1)  = (T1, -1/2 T2 – 3/2 T3, - 1/2 T2 +  1/2 

T3); 

(T1,T2,T3) 

€ 

σ v''

→
 (S2+S1+S3, 2S2-S1-S3,S1-S3)  = (T1, - 1/2 T2 +  3/2 T3, 1/2T2 + 1/2T3); 

(T1,T2,T3) 

€ 

C3

→
 (S3+S1+S2, 2S3-S1-S2,S1-S2)  = (T1, - 1/2T2 – 3/2T3, 1/2T2 – 1/2T3); 

(T1,T2,T3) 

€ 

C3
2

→
 (S2+S3+S1, 2S2-S3-S1,S3-S1)  = (T1, - 1/2T2 + 3/2T3, - 1/2T2 – 1/2T3). 

 

So the matrix representations in the new Ti basis are: 

 

D(3)(E) = 

€ 

1 0 0
0 1 0
0 0 1

 

 

 
  

 

 

 
  
 D(3)(C3) = 

€ 

1 0 0
0 −1/2 −3/2
0 1/2 −1/2

 

 

 
  

 

 

 
  
; 

 

D(3)(C32) =

€ 

1 0 0
0 −1/2 3/2
0 −1/2 −1/2

 

 

 
  

 

 

 
  
 D(3)(σv) = 

€ 

1 0 0
0 1 0
0 0 −1

 

 

 
  

 

 

 
  
; 
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D(3)(σv') = 

€ 

1 0 0
0 −1/2 −3/2
0 −1/2 1/2

 

 

 
  

 

 

 
  
 D(3)(σv") = 

€ 

1 0 0
0 −1/2 3/2
0 1/2 1/2

 

 

 
  

 

 

 
  
. 

 

 

3. Reduction of the Reducible Representation 

 These six matrices can be verified to multiply just as the symmetry operations 

do; thus they form another three-dimensional representation of the group. We see that in 

the Ti basis the matrices are block diagonal. This means that the space spanned by the Ti 

functions, which is the same space as the Sj span, forms a reducible representation that 

can be decomposed into a one dimensional space and a two dimensional space (via 

formation of the Ti functions). Note that the characters (traces) of the matrices are not 

changed by the change in bases.  

 The one-dimensional part of the above reducible three-dimensional 

representation is seen to be the same as the totally symmetric representation we arrived 

at before, D(1).  The two-dimensional representation that is left can be shown to be 

irreducible ; it has the following matrix representations: 

 

 

D(2)(E) = 

€ 

1 0
0 1
 

 
 

 

 
   D(2)(C3) 

€ 

−1/2 −3/2
1/2 −1/2

 

 
 

 

 
    D(2)(C32) =  

€ 

−1/2 3/2
−1/2 −1/2
 

 
 

 

 
  

 

D(2)(σv) = 

€ 

1 0
0 −1
 

 
 

 

 
  D(2)(σv') =  

€ 

−1/2 −3/2
−1/2 1/2
 

 
 

 

 
  D(2)(σv'') =  

€ 

−1/2 −3/2
−1/2 1/2
 

 
 

 

 
  

 

The characters can be obtained by summing diagonal elements: 

 

 χ(E) = 2, χ (2C3) = -1, χ (3σv) = 0. 

 

4. Rotations as a Basis 
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 Another one-dimensional representation of the group can be obtained by 

taking rotation about the Z-axis (the C3 axis) as the object on which the symmetry 

operations act: 

 

 Rz 

€ 

E
→

 Rz  Rz 

€ 

C3

→
 Rz   Rz 

€ 

C3
2

→
 Rz; 

 Rz 

€ 

σ v

→
 -Rz  Rz 

€ 

σ v''

→
 -Rz Rz 

€ 

σ v'

→
 -Rz. 

 

In writing these relations, we use the fact that reflection reverses the sense of a rotation. 

The matrix representations corresponding to this one-dimensional basis are: 

 

 D(1)(E) = 1   D(1)(C3) = 1  D(1)(C32) = 1; 

 

 D(1)(σv) = -1  D(1)(σv") = -1  D(1) (σv') = -1. 

 

These one-dimensional matrices can be shown to multiply together just like the 

symmetry operations of the C3v group. They form an irreducible representation of the 

group (because it is one-dimensional, it cannot be further reduced). Note that this one-

dimensional representation is not identical to that found above for the 1s N-atom orbital, 

or the T1 function. 

 

5. Overview 

 We have found three distinct irreducible representations for the C3v symmetry 

group; two different one-dimensional and one two dimensional representations.  Are 

there any more?  An important theorem of group theory shows that the number of 

irreducible representations of a group is equal to the number of classes.  Since there are 

three classes of operation (i.e., E, C3 and σv), we have found all the irreducible 

representations of the C3v point group. There are no more. 

 The irreducible representations have standard names; the first D(1) (that 

arising from the T1 and 1sN orbitals) is called A1, the D(1) arising from Rz is called A2 
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and D(2) is called E (not to be confused with the identity operation E). We will see 

shortly where to find and identify these names. 

 Thus, our original D(4) representation was a combination of two A1 

representations and one E representation. We say that D(4) is a direct sum representation: 

D(4) = 2A1 ⊕ E. A consequence is that the characters of the combination representation 

D(4) can be obtained by adding the characters of its constituent irreducible 

representations.   

 

 E 2C3 3σv 

A1 1  1 1 

A1 1  1 1 

E 2 -1 0 

2A1 ⊕ E 4  1 2 

 

 

6. How to Decompose Reducible Representations in General 

 

 Suppose you were given only the characters (4,1,2).  How can you find out 

how many times A1, E, and A2 appear when you reduce D(4) to its irreducible parts?  

You want to find a linear combination of the characters of A1, A2 and E that add up 

(4,1,2).  You can treat the characters of matrices as vectors and take the dot product of 

A1 with D(4) 

 

  

€ 

1 1 1 1 1 1
E C3 C3

2 σ v σ v ' σ v''

 

 
 

 

 
 

€ 

4 E
1 C3

1 C3
2

2 σ v

2 σ v '

2 σ v ''

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

= 4 + 1 + 1 + 2 + 2 + 2 = 12. 
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The vector (1,1,1,1,1,1) is not normalized; hence to obtain the component of 

(4,1,1,2,2,2) along a unit vector in the (1,1,1,1,1,1) direction, one must divide by the 

norm of (1,1,1,1,1,1); this norm is 6. The result is that the reducible representation 

contains 12/6 = 2 A1 components. Analogous projections in the E and A2 directions give 

components of 1 and 0, respectively. In general, to determine the number nΓ of times 

irreducible representation Γ appears in the reducible representation with characters χred, 

one calculates  

 

nΓ =

€ 

1
g

χΓ(R)
R
∑ χ red (R), 

 

where g is the order of the group (i.e.. the number of operations in the group; six in our 

example) and χΓ(R) are the characters of the Γth irreducible representation. 

 

7. Commonly Used Bases 

 We could take any set of functions as a basis for a group representation. 

Commonly used sets include: Cartesian displacement coordinates (x,y,z) located on the 

atoms of a polyatomic molecule (their symmetry treatment is equivalent to that involved 

in treating a set of p orbitals on the same atoms), quadratic functions such as d orbitals - 

xy,yz,xz,x2-y2,z2, as well as rotations about the x, y and z axes.  The transformation 

properties of these very commonly used bases are listed in the character tables shown in 

Section 4.4.  

 

8. Summary 

  The basic idea of symmetry analysis is that any basis of orbitals, 

displacements, rotations, etc. transforms either as one of the irreducible representations 

or as a direct sum (reducible) representation. Symmetry tools are used to first determine 

how the basis transforms under action of the symmetry operations. They are then used to 

decompose the resultant representations into their irreducible components.  
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4.3.6. More Examples 

 

1. The 2p Orbitals of Nitrogen  

 For a function to transform according to a specific irreducible representation 

means that the function, when operated upon by a point-group symmetry operator, yields 

a linear combination of the functions that transform according to that irreducible 

representation.  For example, a 2pz orbital (z is the C3 axis of NH3) on the nitrogen atom 

belongs to the A1 representation because it yields unity times itself when C3, C32, σv , 

σv',σv"  or the identity operation act on it.  The factor of 1 means that 2pz has A1 

symmetry since the characters (the numbers listed opposite A1 and below E, 2C3, and 

3σv in the C3v character table shown in Section 4.4) of all six symmetry operations are 1 

for the A1 irreducible representation. 

 The 2px and 2py orbitals on the nitrogen atom transform as the E 

representation since C3, C32, σv, σv', σv" and the identity operation map 2px and 2py 

among one another.  Specifically, 

 

 

          C3 
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2px
2py

 

 
 

 

 
   = 
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cos120 −sin120

sin120 cos120
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2px
2py

 

 
 

 

 
   

 

         C32  
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2px
2py
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cos240 −sin240

sin240 cos240
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2py

 

 
 

 

 
   

 

           E 

€ 

2px
2py
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1 0
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2py

 

 
 

 

 
   

 

         σv 
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2px
2py
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−1 0
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2px
2py
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         σv' 

€ 

2px
2py

 

 
 

 

 
  = 

€ 

1/2 3
2

3
2

−1/2

 

 

 
 
  

 

 

 
 
  

€ 

2px
2py

 

 
 

 

 
  

 

         σv" 
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2px
2py

 

 
 

 

 
 = 
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1/2 − 3
2

− 3
2

−1/2

 

 

 
 
  

 

 

 
 
  

€ 

2px
2py

 

 
 

 

 
 . 

 

 

The 2 x 2 matrices, which indicate how each symmetry operation maps 2px and 2py into 

some combinations of 2px and 2py, are the representation matrices ( D(IR)) for that 

particular operation and for this particular irreducible representation (IR).  For example, 

 

 

    

€ 

1/2 3
2

3
2

−1/2

 

 

 
 
  

 

 

 
 
  
 = D(E)(σv') 

 

 

This set of matrices have the same characters as the D(2) matrices obtained earlier when 

the Ti displacement vectors were analyzed, but the individual matrix elements are 

different because we used a different basis set (here 2px and 2py ; above it was T2 and 

T3). This illustrates the invariance of the trace to the specific representation; the trace 

only depends on the space spanned, not on the specific manner in which it is spanned. 

 

2. A Short-Cut 

 A short-cut device exists for evaluating the trace of such representation 

matrices (that is, for computing the characters). The diagonal elements of the 

representation matrices are the projections along each orbital of the effect of the 
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symmetry operation acting on that orbital.  For example, a diagonal element of the C3 

matrix is the component of C32py along the 2py direction.  More rigorously, it 

is ∫ 2py* C3 2py dτ.  Thus, the character of the C3 matrix is the sum of  ∫ 2py* C3 2py dτ  

and ∫ 2px* C3 2px dτ. In general, the character χ of any symmetry operation S can be 

computed by allowing S to operate on each orbital φi, then projecting Sφi along φi (i.e., 

forming  

€ 

φi
*Sφidτ∫ , and summing these terms, 

 

€ 

φi
*Sφi∫

i
∑ dτ= χ(S). 

 

 If these rules are applied to the 2px and 2py orbitals of nitrogen within the C3v 

point group, one obtains  

 

 χ(E) = 2, χ(C3) = χ(C32) = -1, χ(σv) = χ(σv") = χ(σv') = 0.  

 

This set of characters is the same as D(2) above and agrees with those of the E 

representation for the C3v point group. Hence, 2px and 2py belong to or transform as the 

E representation.  This is why (x,y) is to the right of the row of characters for the E 

representation in the C3v character table shown in Section 4.4. In similar fashion, the 

C3v character table (please refer to this table now) states that dx2−y2 and dxy orbitals on 

nitrogen transform as E, as do dxy and dyz, but dz2 transforms as A1.  

 Earlier, we considered in some detail how the three 1sH orbitals on the 

hydrogen atoms transform.  Repeating this analysis using the short-cut rule just 

described, the traces (characters) of the 3 x 3 representation matrices are computed by 

allowing E, 2C3, and 3σv to operate on 1sH1, 1sH2, and 1sH3 and then computing the 

component of the resulting function along the original function. The resulting 

characters are χ(E) = 3, χ(C3) = χ(C32) = 0, and χ(σv) = χ(σv') = χ(σv") = 1, in 

agreement with what we calculated before.   

 Using the orthogonality of characters taken as vectors we can reduce the 

above set of characters to A1 + E.  Hence, we say that our orbital set of three 1sH 
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orbitals forms a reducible representation consisting of the sum of A1 and E IR's.  This 

means that the three 1sH orbitals can be combined to yield one orbital of A1 symmetry 

and a pair that transform according to the E representation.   

 

4.3.7.  Projector Operators:  Symmetry Adapted Linear Combinations of Atomic 

Orbitals 

 To generate the above A1 and E symmetry-adapted orbitals, we make use of 

so-called symmetry projection operators PE and PA1.  These operators are given in 

terms of linear combinations of products of characters times elementary symmetry 

operations as follows: 

 

PA1 = 

€ 

χA1
(S)S

S
∑  

   

PE =

€ 

χE (S)S
S
∑  

 

 

where S ranges over C3, C32, σv, σv' and σv" and the identity operation.  The result of 

applying PA1 to say 1sH1 is 

 

  PA1 1sH1 = 1sH1 + 1sH2 + 1sH3 + 1sH2 + 1sH3 + 1sH1 

 

      = 2(1sH1 + 1sH2 + 1sH3) = φA1, 

 

which is an (unnormalized) orbital having A1 symmetry.  Clearly, this same φA1 

orbital would be generated by PA1 acting on 1sH2 or 1sH3.  Hence, only one A1 orbital 

exists.  Likewise,  

 

  PE1sH1 = 2 ⋅ 1sH1 - 1sH2 - 1sH3 ≡ φE,1 
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which is one of the symmetry adapted orbitals having E symmetry.  The other E orbital 

can be obtained by allowing PE to act on 1sH2 or 1sH3: 

 

  PE1sH2 = 2 ⋅ 1sH2 - 1sH1 - 1sH3 ≡ φE,2 

 

  PE1sH3 = 2 ⋅ 1sH3 - 1sH1 - 1sH2 = φE,3 . 

 

It might seem as though three orbitals having E symmetry were generated, but only 

two of these are really independent functions.  For example, φE,3 is related to φE,1 and 

φE,2 as follows: 

 

  φE,3 = -(φE,1 + φE,2). 

 

Thus, only φE,1 and φE,2 are needed to span the two-dimensional space of the E 

representation.  If we include φE,1 in our set of orbitals and require our orbitals to be 

orthogonal, then we must find numbers a and b such that φ'E = aφE,2 + bφE,3 is 

orthogonal to φE,1: 

€ 

φE '
* φEdτ∫ = 0.  A straightforward calculation gives a = -b or φ'E = a 

(1sH2 - 1sH3) which agrees with what we used earlier to construct the Ti functions in 

terms of the Sj functions. 

 

4.3.8. Summary 

 Let us now summarize what we have learned thus far about point group 

symmetry.  Any given set of atomic orbitals {φi}, atom-centered displacements, or 

rotations can be used as a basis for the symmetry operations of the point group of the 

molecule.  The characters χ(S) belonging to the operations S of this point group within 

any such space can be found by summing the integrals 

€ 

φi
*Sφidτ∫  over all the atomic 

orbitals (or corresponding unit vector atomic displacements or rotations).  The 
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resultant characters will, in general, be reducible to a combination of the characters of 

the irreducible representations χi(S).  To decompose the characters χ(S) of the 

reducible representation to a sum of characters χi(S) of the irreducible representation  

 

χred(S) =

€ 

φk
*Sφk∫

k
∑ dτ = niχ i(S)

i
∑ , 

 

it is necessary to determine how many times, ni, the i-th irreducible representation 

occurs in the reducible representation.  The expression for ni is  

 

ni =

€ 

1
g

χ i(R)
R
∑ χ red (R) 

  

in which g is the order of the point group- the total number of symmetry operations in 

the group (e.g., g = 6 for C3v).   

 For example, the reducible representation χ(E) = 3, χ(C3) = 0, and χ(σv) = 1 

formed by the three 1sH orbitals discussed above can be decomposed as follows: 

 

  nA1 = 1/6 (3 • 1 + 2 •0 • 1 = 3 • 1 • 1 ) = 1, 

 

  nA2 = 1/6 (3 • 1 + 2 •0 • 1 = 3 • 1 • -1 ) = 0, 

 

  nE = 1/6 (3 • 2 + 2 •0 • -1 = 3 • 1 • 0 ) = 1. 

 

These equations state that the three 1sH orbitals can be combined to give one A1 

orbital and, since E is degenerate, one pair of E orbitals, as established above.  With 

knowledge of the ni, the symmetry-adapted orbitals can be formed by allowing the 

projectors   

 

Pi = 

€ 

χ i(S)S
S
∑  
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to operate on each of the primitive atomic orbitals.  How this is carried out was 

illustrated for the 1sH  orbitals in our earlier discussion. These tools allow a symmetry 

decomposition of any set of atomic orbitals into appropriate symmetry-adapted 

orbitals. 

 Before considering other concepts and group-theoretical machinery, it 

should once again be stressed that these same tools can be used in symmetry analysis 

of the translational, vibrational and rotational motions of a molecule.  The twelve 

motions of NH3 (three translations, three rotations, six vibrations) can be described in 

terms of combinations of displacements of each of the four atoms in each of three 

(x,y,z) directions.  Hence, unit vectors placed on each atom directed in the x, y, and z 

directions form a basis for action by the operations {S} of the point group.  In the case 

of NH3, the characters of the resultant 12 x 12 representation matrices form a reducible 

representation in the C2v point group:  χ(E) = 12, χ(C3) = χ(C32) = 0,  χ(σv) = χ(σv') = 

χ (σv") = 2.  For example under σv, the H2 and H3 atoms are interchanged, so unit 

vectors on either one will not contribute to the trace.  Unit z-vectors on N and H1 

remain unchanged as well as the corresponding y-vectors.  However, the x-vectors on 

N and H1 are reversed in sign.  The total character for σv' the H2 and H3 atoms are 

interchanged, so unit vectors on either one will not contribute to the trace.  Unit z-  

vectors on N and H1 remain unchanged as well as the corresponding y-vectors.  

However, the x-vectors on N and H1 are reversed in sign.  The total character for σv is 

thus 4 - 2 = 2.  This representation can be decomposed as follows: 

 

 nA1 = 1/6 (1• 1• 12 + 2 •1 •0  + 3 • 1 • 2 ) = 3, 

 

 nA2 = 1/6 (1• 1• 12 + 2 •1 •0  + 3 • -1 • 2 ) = 1, 

 

 nE   = 1/6 (1• 2• 12 + 2 •-1 •0  + 3 • 0 • 2 ) = 4. 

 

From the information on the right side of the C3v character table, translations of all 
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four atoms in the z, x and y directions transform as A1(z) and E(x,y), respectively, 

whereas rotations about the z(Rz), x(Rx), and y(Ry) axes transform as A2 and E.  

Hence, of the twelve motions, three translations have A1 and E symmetry and three 

rotations have A2 and E symmetry.  This leaves six vibrations, of which two have A1 

symmetry, none have A2 symmetry, and two (pairs) have E symmetry.  We could 

obtain symmetry-adapted vibrational and rotational bases by allowing symmetry 

projection operators of the irreducible representation symmetries to operate on various 

elementary Cartesian (x,y,z) atomic displacement vectors centered on the four atoms.  

 

4.3.9  Direct Product Representations 

 

1. Direct Products in N-Electron Wave functions 

 We now turn to the symmetry analysis of orbital products.  Such knowledge 

is important because one is routinely faced with constructing symmetry-adapted N-

electron configurations that consist of products of N individual spin orbitals, one for 

each electron.  A point-group symmetry operator S, when acting on such a product of 

orbitals, gives the product of S acting on each of the individual orbitals  

 

 S(φ1φ2φ3...φN) = (Sφ1) (Sφ2) (Sφ3) ... (SφN).   

 

For example, reflection of an N-orbital product through the σv plane in NH3 applies 

the reflection operation to all N electrons. 

 Just as the individual orbitals formed a basis for action of the point-group 

operators, the configurations (N-orbital products) form a basis for the action of these 

same point-group operators.  Hence, the various electronic configurations can be 

treated as functions on which S operates, and the machinery illustrated earlier for 

decomposing orbital symmetry can then be used to carry out a symmetry analysis of 

configurations.   

 Another shortcut makes this task easier. Since the symmetry adapted 

individual orbitals {φi, i = 1, ..., M} transform according to irreducible representations, 
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the representation matrices for the N-term products shown above consist of products of 

the matrices belonging to each φi. This matrix product is not a simple product but what 

is called a direct product.  To compute the characters of the direct product matrices, 

one multiplies the characters of the individual matrices of the irreducible 

representations of the N orbitals that appear in the electron configuration.  The direct-

product representation formed by the orbital products can therefore be symmetry-

analyzed (reduced) using the same tools as we used earlier.  

 For example, if one is interested in knowing the symmetry of an orbital 

product of the form a12a22e2  (note: lower case letters are used to denote the symmetry 

of electronic orbitals, whereas capital letters are reserved to label the overall 

configuration’s symmetry) in C3v symmetry, the following procedure is used. For each 

of the six symmetry operations in the C2v point group, the product of the characters 

associated with each of the six spin orbitals (orbital multiplied by α or β spin) is 

formed 

 

 

χ(S) = 

€ 

Π iχ i(S)= (χA1(S))2 (χA2(S))2 (χE(S))2. 

 

In the specific case considered here, χ(E) = 4, χ(2C3) = 1, and χ(3σv) = 0. Notice that 

the contributions of any doubly occupied non-degenerate orbitals (e.g., a12, and a22) to 

these direct product characters χ(S) are unity because for all operators (χk(S))2 = 1 for 

any one-dimensional irreducible representation.  As a result, only the singly occupied 

or degenerate orbitals need to be considered when forming the characters of the 

reducible direct-product representation χ(S).  For this example this means that the 

direct-product characters can be determined from the characters χE(S) of the two 

active (i.e., non-closed-shell) orbitals - the e2 orbitals.  That is, χ(S) = χE(S) ⋅ χE(S). 

 From the direct-product characters χ(S) belonging to a particular electronic 

configuration (e.g., a12a22e2), one must still decompose this list of characters into a 

sum of irreducible characters.  For the example at hand, the direct-product characters 
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χ(S) decompose into one A1, one A2, and one E representation.  This means that the e2 

configuration contains A1, A2, and E symmetry elements. Projection operators 

analogous to those introduced earlier for orbitals can be used to form symmetry-

adapted orbital products from the individual basis orbital products of the form 

a12a22exmeym' , where m and m' denote the occupation (1 or 0) of the two degenerate 

orbitals ex and ey. In Appendix III of Electronic Spectra and Electronic Structure of 

Polyatomic Molecules , G. Herzberg, Van Nostrand Reinhold Co., New York, N.Y. 

(1966) the resolution of direct products among various representations within many 

point groups are tabulated. 

 When dealing with indistinguishable particles such as electrons, it is also 

necessary to further project the resulting orbital products to make them antisymmetric 

(for Fermions) or symmetric (for Bosons) with respect to interchange of any pair of 

particles. This step reduces the set of N-electron states that can arise. For example, in 

the above e2 configuration case, only 3A2, 1A1, and 1E states arise; the 3E, 3A1, and 

1A2 possibilities disappear when the antisymmetry projector is applied. In contrast, for 

an e1e'1 configuration, all states arise even after the wave function has been made 

antisymmetric. The steps involved in combining the point group symmetry with 

permutational antisymmetry are illustrated in Chapter 6 of this text as well as in 

Chapter 10 of my QMIC text.  

 

2. Direct Products in Selection Rules 

 

 Two states ψa and ψb that are eigenfunctions of a Hamiltonian Ho in the 

absence of some external perturbation (e.g., electromagnetic field or static electric 

field or potential due to surrounding ligands) can be "coupled" by the perturbation V 

only if the symmetries of V and of the two wave functions obey a so-called selection 

rule. In particular, only if the coupling integral  

 

€ 

ψa
*Vψbdτ∫ = Va,b 
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is non-vanishing will the two states be coupled by V . 

 The role of symmetry in determining whether such integrals are non-zero 

can be demonstrated by noting that the integrand, considered as a whole, must contain 

a component that is invariant under all of the group operations (i.e., belongs to the 

totally symmetric representation of the group) if the integral is to not vanish. In terms 

of the projectors introduced above we must have 

 

€ 

χA (S)S[ψa
*Sψb ]

S
∑  

 

not vanish. Here the subscript A denotes the totally symmetric representation of 

whatever point group applies. The symmetry of the product ψa* V ψb is, according to 

what was covered earlier, given by the direct product of the symmetries of ψa*  of V 

and of ψb. So, the conclusion is that the integral will vanish unless this triple direct 

product contains, when it is reduced to its irreducible components, a component of the 

totally symmetric representation.  

 Another way to state the above result, and a way this is more often used in 

practice, is that the integral 

€ 

ψa
*Vψbdτ∫  will vanish unless the symmetry of the direct 

product 

€ 

Vψb  matches the symmetry of 

€ 

ψa
* . Only when these symmetries match will 

the triple direct product contain a non-zero component of the totally symmetric 

representation. This is very much the same as what we saw earlier in this Chapter 

when we discussed how angular momentum coupling could limit which states 

contribute to the second-order perturbation theory energy. The angular momenta of V 

and of ψb , when coupled, must have a component that matches the angular momentum 

of ψa. 

 To see how this result is used, consider the integral that arises in formulating 

the interaction of electromagnetic radiation with a molecule within the electric-dipole 

approximation: 

 

€ 

ψa
*rψbdτ∫ . 
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Here, r is the vector giving, together with e, the unit charge, the quantum mechanical 

dipole moment operator 

 

r = e 

€ 

ZnRn
n
∑   - e 

€ 

ri
i
∑ , 

 

where Zn and Rn are the charge and position of the nth nucleus and rj is the position of 

the jth electron. Now, consider evaluating this integral for the singlet n→π* transition 

in formaldehyde. Here, the closed-shell ground state is of 1A1 symmetry and the 

singlet excited state, which involves promoting an electron from the non-bonding b2 

lone pair orbital on the Oxygen atom into the anti-bonding π* b1 orbital on the CO 

moiety, is of 1A2 symmetry (b1x b2 = a2). The direct product of the two wave function 

symmetries thus contains only a2 symmetry. The three components (x, y, and z) of the 

dipole operator have, respectively, b1, b2, and a1 symmetry. Thus, the triple direct 

products give rise to the following possibilities: 

 

a2 x b1 = b2, 

 

a2 x b2 = b1, 

 

a2 x a1 = a2 . 

 

There is no component of a1 symmetry in the triple direct product, so the integral 

vanishes. The alternative way of reaching this same conclusion is to notice that the 

direct product of the symmetries of the π* b1 orbital and the b2 lone pair orbital is a2 

(b1x b2 = a2), which does not match the symmetry of any component of the dipole 

operator. Either route allows us to conclude that the n→π* excitation in formaldehyde 

is electric dipole forbidden.  
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4.3.10 Overview 
 

 We have shown how to make a symmetry decomposition of a basis of atomic 

orbitals (or Cartesian displacements or orbital products) into irreducible representation 

components.  This tool is very helpful when studying spectroscopy and when 

constructing the orbital correlation diagrams that form the basis of the Woodward-

Hoffmann rules that play useful roles in predicting whether chemical reactions will have 

energy barriers in excess of thermodynamic barriers.  We also learned how to form the 

direct-product symmetries that arise when considering configurations consisting of 

products of symmetry-adapted spin orbitals. Finally, we learned how the direct product 

analysis allows one to determine whether or not integrals of products of wave functions 

with operators between them vanish.  This tool is of utmost importance in determining 

selection rules in spectroscopy and for determining the effects of external perturbations 

on the states of the species under investigation.  

 

4.4 Character Tables 

 

Point Group Character Tables 

 

C1  E 

A  1 

 

 

Cs  E σh   

A'  1  1 x,y,Rz x2,y2,z2,xy 

A"  1 -1 z,Rx,Ry yz,xz 

 

 

Ci  E  i   

Ag  1  1 Rx,Ry,Rz x2,y2,z2,xy,xz,yz 
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Au  1 -1 x,y,z  

 

 

C2  E C2   

A  1  1 z,Rz x2,y2,z2,xy 

B  1 -1 x,y,Rx,Ry yz,xz 

 

 

D2  E C2(z) C2(y) C2(x)   

A  1  1  1  1  x2,y2,z2 

B1  1  1 -1 -1 z,Rz xy 

B2  1 -1  1 -1 y,Ry xz 

B3  1 -1 -1  1 x,Rx yz 

 

 

D3  E 2C3 3C2   

A1  1  1  1  x2+y2,z2 

A2  1  1 -1 z,Rz  

E  2 -1  0 (x,y)(Rx,Ry) (x2-y2,xy)(xz,yz) 
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D4  E 2C4   C2 

(=C42) 

2C2' 2C2"   

A1  1  1  1  1  1  x2+y2,z2 

A2  1  1  1 -1 -1 z,Rz  

B1  1 -1  1  1 -1  x2-y2 

B2  1 -1  1 -1  1  xy 

E  2  0 -2  0  0 (x,y)(Rx,Ry) (xz,yz) 

 

 

C2v  E C2 σv(xz) σv'(yz)   

A1  1  1  1  1 z x2,y2,z2 

A2  1  1 -1 -1 Rz xy 

B1  1 -1  1 -1 x,Ry xz 

B2  1 -1 -1  1 y,Rx yz 

 

 

C3v  E 2C3 3σv   

A1  1  1  1 z x2+y2,z2 

A2  1  1 -1 Rz  

E  2 -1  0 (x,y)(Rx,Ry) (x2-y2,xy)(xz,yz) 

 

 

C4v  E 2C4 C2 2σv 2σd   

A1  1  1  1  1  1 z x2+y2,z2 

A2  1  1  1 -1 -1 Rz  

B1  1 -1  1  1 -1  x2-y2 

B2  1 -1  1 -1  1  xy 

E  2  0 -2  0  0 (x,y)(Rx,Ry) (xz,yz) 
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C2h  E C2  i σh   

Ag  1  1  1  1 Rz x2,y2,z2,xy 

Bg  1 -1  1 -1 Rx,Ry xz,yz 

Au  1  1 -1 -1 z  

Bu  1 -1 -1  1 x,y  
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D2h  E C2(z) C2(y) C2(x)  i σ(xy) σ(xz) σ(yz)   

Ag  1  1  1  1  1  1  1  1  x2,y2,z2 

B1g  1  1 -1 -1  1  1 -1 -1 Rz xy 

B2g  1 -1  1 -1  1 -1  1 -1 Ry xz 

B3g  1 -1 -1  1  1 -1 -1  1 Rx yz 

Au  1  1  1  1 -1 -1 -1 -1   

B1u  1  1 -1 -1 -1 -1  1  1 z  

B2u  1 -1  1 -1 -1  1 -1  1 y  

B3u  1 -1 -1  1 -1  1  1 -1 x  

 

 

D3h  E 2C3 3C2 σh 2S3 3σv   

A1'  1  1  1  1  1  1  x2+y2,z2 

A2'  1  1 -1  1  1 -1 Rz  

E'  2 -1  0  2 -1  0 (x,y) (x2-y2,xy) 

A1"  1  1  1 -1 -1 -1   

A2"  1  1 -1 -1 -1  1 z  

E"  2 -1  0 -2  1  0 (Rx,Ry) (xz,yz) 

 

 

D4h  E 2C4 C2 2C2' 2C2"  i 2S4 σh 2σv 2σd   

A1g  1  1  1  1  1  1  1  1  1  1  x2+y2,z2 

A2g  1  1  1 -1 -1  1  1  1 -1 -1 Rz  

B1g  1 -1  1  1 -1  1 -1  1  1 -1  x2-y2 

B2g  1 -1  1 -1  1  1 -1  1 -1  1  xy 

Eg  2  0 -2  0  0  2  0 -2  0  0 (Rx,Ry) (xz,yz) 

A1u  1  1  1  1  1 -1 -1 -1 -1 -1   
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A2u  1  1  1 -1 -1 -1 -1 -1  1  1 z  

B1u  1 -1  1  1 -1 -1  1 -1 -1  1   

B2u  1 -1  1 -1  1 -1  1 -1  1 -1   

Eu  2  0 -2  0  0 -2  0  2  0  0 (x,y)  
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D6h  E 2C6 2C3 C2 3C2' 3C2"  i 2S3 2S6 σh 3σd 3σv   

A1g  1  1  1  1  1  1  1  1  1  1  1  1  x2+y2,z2 

A2g  1  1  1  1 -1 -1  1  1  1  1 -1 -1 Rz  

B1g  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1   

B2g  1 -1  1 -1 -1  1  1 -1  1 -1 -1  1   

E1g  2  1 -1 -2  0  0  2  1 -1 -2  0  0 (Rx,Ry) (xz,yz) 

E2g  2 -1 -1  2  0  0  2 -1 -1  2  0  0  (x2-y2,xy) 

A1u  1  1  1  1  1  1 -1 -1 -1 -1 -1 -1   

A2u  1  1  1  1 -1 -1 -1 -1 -1 -1  1  1 z  

B1u  1 -1  1 -1  1 -1 -1  1 -1  1 -1  1   

B2u  1 -1  1 -1 -1  1 -1  1 -1  1  1 -1   

E1u  2  1 -1 -2  0  0 -2 -1  1  2  0  0 (x,y)  

E2u  2 -1 -1  2  0  0 -2  1  1 -2  0  0   

 

 

D2d  E 2S4 C2 2C2' 2σd   

A1  1  1  1  1  1  x2+y2,z2 

A2  1  1  1 -1 -1 Rz  

B1  1 -1  1  1 -1  x2-y2 

B2  1 -1  1 -1  1 z xy 

E  2  0 -2  0  0 (x,y)(Rx,Ry) (xz,yz) 

 

 

D3d  E 2C3 3C2  i 2S6 3σd   

A1g  1  1  1  1  1  1  x2+y2,z2 

A2g  1  1 -1  1  1 -1 Rz  

Eg  2 -1  0  2 -1  0 (Rx,Ry) (x2-y2,xy)(xz,yz) 

A1u  1  1  1 -1 -1 -1   
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A2u  1  1 -1 -1 -1  1 z  

Eu  2 -1  0 -2  1  0 (x,y)  

 

 

 

 

S4  E S4 C2 S43   

A   1  1  1  1   Rz x2+y2,z2 

B   1 -1  1 -1   z x2-y2,xy 

E {1
1  

 i
-i  

-1
-1   -i

  i } 
(x,y)(Rx,Ry) (xz,yz) 

 

 

T  E 4C3 4C32 3C2  ε=exp(2πi/3) 

A   1 1 1  1  x2+y2+z2 

E {1
1  

 ε 
 ε*  

 ε*
 ε   

  1
 -1 } 

 (2z2-x2-y2,x2-y2) 

T   3 0 0 -1 (Rx,Ry,Rz)(x,y,z) (xy,xz,yz) 

 

 

Th   E 4C3 4C32 3C2  i 4S6 4S65 3σh  ε=exp(2πi/3) 

Ag   1 1 1  1  1  1  1  1  x2+y2+z2 

Au   1 1 1  1 -1 -1 -1 -1   

Eg {1
1  

 ε 
 ε*  

 ε*
 ε   

 1
 1  

 1
 1  

 ε 
 ε*  

 ε*
 ε   

 1
 1 } 

 (2z2-x2-y2, 

x2-y2) 

Eu {1
1  

 ε 
 ε*  

 ε*
 ε   

 1
 1  

-1
-1  

 -ε 
 -ε*  

 -ε*
 -ε   

-1
-1 } 

  

Tg   3 0 0 -1  1  0  0 -1 (Rx,Ry,Rz)  

Tu   3 0 0 -1 -1  0  0  1 (x,y,z) (xy,xz,yz) 
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Td  E 8C3 3C2 6S4 6σd   

A1  1  1  1  1  1  x2+y2+z2 

A2  1  1  1 -1 -1   

E  2 -1  2  0  0  (2z2-x2-y2,x2-y2) 

T1  3  0 -1  1 -1 (Rx,Ry,Rz)  

T2  3  0 -1 -1  1 (x,y,z) (xy,xz,yz) 

 

 

O  E 6C4 3C2 

(=C42) 

8C3 6C2   

A1  1  1  1  1  1  x2+y2+z2 

A2  1 -1  1  1 -1   

E  2  0  2 -1  0  (2z2-x2-y2,x2-y2) 

T1  3  1 -1  0 -1 (Rx,Ry,Rz)(x,y,z)  

T2  3 -1 -1  0  1  (xy,xz,yz) 

 

 

Oh  E 8C3 6C2 6C4 3C2 

(=C42) 

 i 6S4 8S6 3σh 6σd   

A1g  1  1  1  1  1  1  1  1  1  1  x2+y2+z2 

A2g  1  1 -1 -1  1  1 -1  1  1 -1   

Eg  2 -1  0  0  2  2  0 -1  2  0  (2z2-x2-y2, 

x2-y2) 

T1g  3  0 -1  1 -1  3  1  0 -1 -1 (Rx,Ry,Rz)  

T2g  3  0  1 -1 -1  3 -1  0 -1  1  (xy,xz,yz) 

A1u  1  1  1  1  1 -1 -1 -1 -1 -1   

A2u  1  1 -1 -1  1 -1  1 -1 -1  1   
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Eu  2 -1  0  0  2 -2  0  1 -2  0   

T1u  3  0 -1  1 -1 -3 -1  0  1  1 (x,y,z)  

T2u  3  0  1 -1 -1 -3  1  0  1 -1   

 

 

C∞v  E 2C∞Φ ... ∞σv   

A 1≡Σ+  1  1 ...  1 z x2+y2,z2 

A2≡Σ-  1  1 ... -1 Rz  

E 1≡Π  2 2CosΦ ...  0 (x,y)(Rx,Ry) (xz,yz) 

E2≡Δ  2 2Cos2Φ ...  0  (x2-y2,xy) 

E3≡Φ  2 2Cos3Φ ...  0   

... ... ... ... ...   
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D∞h  E 2C∞Φ ... ∞σv  i 2S∞Φ ... ∞C2   

Σg+  1  1 ...  1  1  1 ...  1  x2+y2,z2 

Σg-  1  1 ... -1  1  1 ... -1 Rz  

Πg  2 2CosΦ ...  0  2 -2CosΦ ...  0 (Rx,Ry) (xz,yz) 

Δg  2 2Cos2Φ ...  0  2 2Cos2Φ ...  0  (x2-y2,xy) 

... ... ... ... ... ... ... ... ...   

Σu+  1  1 ...  1 -1 -1 ... -1 z  

Σu-  1  1 ... -1 -1 -1 ...  1   

Πu  2 2CosΦ ...  0 -2 2CosΦ ...  0 (x,y)  

Δu  2 2Cos2Φ ...  0 -2 -2Cos2Φ ...  0   

... ... ... ... ... ... ... ... ...   

 

4.5 Time Dependent Perturbation Theory 

 

 When dealing with the effects of external perturbations (e.g., applied fields, 

collisions with other species), one needs to have a way to estimate the probabilities and 

rates of transitions among states of the system of interest induced by these perturbations. 

Time-dependent perturbation theory (TDPT) offers a framework within which such 

estimates can be achieved.  

 In deriving the working equations of TDPT, one begins with the time-dependent 

Schrödinger equation 

 

  

€ 

i∂Ψ
∂t

= [H 0 +V (t)]Ψ  

 

in which H0 is the Hamiltonian for the system whose transitions are to be probed, and 

V(t) is the perturbation caused by the external field or the collision. The wave function 

that solves this equation is expanded in an order-by-order manner as in conventional 

perturbation theory 
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€ 

Ψ =ψ 0(r)exp(−it E
0


) +ψ1 + ... 

 

Here ψ0 is the eigenfunction of H0 from which transitions to other eigenstates (denoted 

€ 

ψ f
0 ) of H0 are being considered. Because, in the absence of the external perturbation 

V(t), the states of H0 are known to vary with time as 
  

€ 

exp(−it
E f
0


), this component of the 

time dependence of the total wave function is included in the above expansion. Then, the 

first-order correction ψ1 is expanded in terms of the complete set of states {

€ 

ψ f
0} after 

which the expansion coefficients {

€ 

Cf
1 (t)} become the unknowns to be solved for 

 

  

€ 

ψ1 = ψ f
0 (r)exp(−it

E f
0


)Cf

1 (t)
f
∑ . 

 

It should be noted that this derivation treats the zeroth-order states {ψ0 and 

€ 

ψ f
0}as 

eigenfunctions of H0. However, in most practical applications of TDPT, {ψ0 and 

€ 

ψ f
0} are 

not known exactly and, in fact, are usually approximated by using variational or 

perturbative methods (e.g., to treat differences between HF mean-field and true 

Coulombic interactions among electrons). So, the derivation of TDPT that we are 

pursuing assumes the {ψ0 and 

€ 

ψ f
0} are exact eigenfunctions. When the final TDPT 

working equations are thus obtained, one usually substitutes perturbative or variational 

approximations to {ψ0 and 

€ 

ψ f
0} into these equations. 

 Substituting the order-by-order expansion into the Schrödinger equation gives, 

for the left- and right-hand sides, 

 

  

€ 

i∂Ψ
∂t

= E 0ψ 0 exp(−it E
0


) + {E f

0ψ f
0 (r)exp(−it

E f
0


)Cf

1 (t)
f
∑ − iψ f

0 (r)exp(−it
E f
0


)
dCf

1 (t)
dt

} 

and  
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€ 

[H 0 +V (t)]Ψ = E 0ψ 0 exp(−it E
0


) + E f

0ψ f
0 (r)exp(−it

E f
0


)Cf

1 (t)
f
∑ +V (t)ψ 0 exp(−it E

0


), 

 

respectively, through first-order. Multiplying each of these equations on the left by the 

complex conjugate of a particular 

€ 

ψ f
0  and integrating over the variables that H0 depends 

on produces the following equation for the unknown first-order coefficients 

 

  

€ 

−i
dCf

1 (t)
dt

=<ψ f
0 |V (t) |ψ 0(r) > exp(−it

(E 0 − E f
0 )


). 

 

The states 

€ 

ψ 0 and

€ 

ψ f
0  can be different electronic states, vibrational states, or rotational 

states. In Chapter 15 of my book Quantum Mechanics in Chemistry referred to in 

Chapter 1, I treat each of these types of transitions in detail. In the present discussion, I 

will limit myself to the general picture of TDPT, rather than focusing on any of these 

particular forms of spectroscopic transitions. 

 To proceed further, one needs to say something about how the perturbation V(t) 

depends on time. In the most common application of TDPT, the perturbation is assumed 

to consist of a term that depends on spatial variables (denoted v(r)) multiplied by a time-

dependent factor of sinusoidal character. An example of such a perturbation is provided 

by the electric dipole potential  

 

 

  

€ 

V (t) = E •[e ZnRn − e ri
i
∑

n
∑ ]cos(ωt)  

 

characterizing photons of frequency ω interacting with the nuclei and electrons of a 

molecule. 
  

€ 

E •[e ZnRn − e ri
i
∑

n
∑ ] is the spatial part v(r) and cos(ωt) is the time-

dependence.  

To allow for the possibility that photons over a range of frequencies may 

impinge on the molecules, we can proceed with the derivation for photons of a given 
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frequency ω and, after obtaining our final result, average over a distribution of 

frequencies characterized by a function f(ω) giving the number of photons with 

frequencies between ω and ω + dω. For perturbations that do not vary in a sinusoidal 

manner (e.g., a perturbation arising from a collision with another molecule), the 

derivation follows a different path at this point (later in this Chapter, I offer an example). 

Because spectroscopic time-dependent perturbations are extremely common in 

chemistry, we will focus much of our attention to this class of perturbations in this 

Chapter. For the reader who wishes a more complete and diverse treatment of TDPT as 

applied to chemistry, I suggest the text Radiation and Noise in Quantum Electronics, W. 

H. Louisell, R. E. Krieger, Pub., Huntington, N. Y. (1977) as well as my text Quantum 

Mechanics in Chemistry mentioned above. 

 To proceed deriving the working equations of TDPT, the above expression for 

V(t) is inserted into the differential equation for the expansion coefficients and the 

equation is integrated from an initial time ti to a final time tf. These times describe when 

the external perturbation is first turned on and when it is turned off, respectively. For 

example, a laser whose photon intensity profile is described by f(ω) might be pulsed on 

from ti to tf, and one wants to know what fraction of the molecules initially in ψ0 have 

undergone transitions to each of the 

€ 

ψ f
0 . Alternatively, the molecules may be flowing in 

a stream that passes through a laser light source that is continually on, entering the laser 

beam at ti and exiting from the laser beam at tf. In either case, the molecules would be 

exposed to the photons from ti until tf. The result of integrating the differential equation 

is 

 

  

€ 

Cf
1 (t) =

−1
2i

<ψ f
0 | v(r) |ψ 0(r) >

t0

t f

∫ [exp(iωt) + exp(−iωt)]exp(−it
(E 0 − E f

0 )


)dt  

 

  

€ 

=
−1
2i

<ψ f
0 | v(r) |ψ 0(r) > [exp(i(ω +ω f ,0)t) + exp(−i(ω −ω f ,0 )t)]dt

t0

t f

∫  
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€ 

=
−1
2i

<ψ f
0 | v(r) |ψ 0(r) > [

exp(i(ω +ω f ,0 )t f ) − exp(i(ω +ω f ,0 )ti)
i(ω +ω f ,0 )

+
exp(−i(ω −ω f ,0 )t f ) − exp(−i(ω −ω f ,0)t i)

i(ω −ω f ,0 )
]

 

 

where the transition frequencies ωf,0 are defined by 

 

  

€ 

ω f ,0 =
E f
0 − E 0


 

 

and t is the time interval tf –ti.  

 Now, if the frequency ω is close to one of the transition frequencies, the term 

with (ω-ωf,0) in the denominator will be larger than the term containing (ω-ωf,0). Of 

course, if 

€ 

ψ f
0  has a higher energy than 

€ 

ψ 0, so one is studying stimulate emission 

spectroscopy, ωf,0 will be negative, in which case the term containing (ω+ωf,0) will 

dominate. In on-resonance absorption spectroscopy conditions, the above expression for 

the first-order coefficients reduces to 

 

€ 

Cf
1 (t) =

  

€ 

−1
2i

<ψ f
0 | v(r) |ψ 0(r) > [

exp(−i(ω −ω f ,0)t f ) − exp(−i(ω −ω f ,0 )t i)
i(ω −ω f ,0)

]. 

 

 

The modulus squared of this quantity gives a measure of the probability of observing the 

system in state 

€ 

ψ f
0  after being subjected to the photons of frequency ω for a length of 

time t.  

 

  

€ 

|Cf
1 (t) |2=

|<ψ f
0 | v(r) |ψ 0(r) >|2

42
[
2{1− cos((ω −ω f ,0 )t))}

(ω −ω f ,0 )
2 ] 

 

  

€ 

=
|<ψ f

0 | v(r) |ψ 0(r) >|2


2

sin2(1/2(ω −ω f ,0)t))
(ω −ω f ,0)

2 . 
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 The function 

€ 

sin2(1/2(ω −ω f ,0)t))
(ω −ω f ,0 )

2  is plotted in Fig. 4.4 for a given value of t as a 

function of ω. It is sharply peaked around ω = ωf,0, decays rapidly as |(ω - ωf,0)| 

increases, and displays recurrences of smaller and smaller intensity when (ω - ωf,0)t 

passes through multiples of π.  

 

 

Figure 4.4 Plot of 

€ 

sin2(1/2(ω −ω f ,0)t))
(ω −ω f ,0 )

2  vs ω for a given value of t. 

 

At larger values of t, the main peak in the plot of this function becomes narrower and 

higher such that, in the t →∞ limit, the area under this plot approaches tπ/2: 

 

 

€ 

Area =
sin2(1/2(ω −ω f ,0 )t))

(ω −ω f ,0 )
2∫ dω = t π

2
. 

 

 The importance of this observation about the area under the plot shown in Fig. 

4.4 can be appreciated by returning to our result  
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€ 

|Cf
1 (t) |2=

|<ψ f
0 | v(r) |ψ 0(r) >|2


2

sin2(1/2(ω −ω f ,0)t))
(ω −ω f ,0)

2  

 

and introducing the fact that the photon source used to induce the transitions being 

studied most likely is not perfectly monochromatic. If it is characterized, as suggested 

earlier, by a distribution of frequencies f(ω) that is broader than the width of the large 

central peak in Fig. 4.4 (n.b., this will be true if the time duration t is long enough), then 

when we average 

€ 

|Cf
1 (t) |2  over f(ω) to obtain a result that directly relates to this kind of 

experiment, we obtain 

 

  

€ 

f (ω) |Cf
1 (t) |2

−∞

∞

∫ dω =
|<ψ f

0 | v(r) |ψ 0(r) >|2


2 f (ω)

sin2(1/2(ω −ω f ,0 )t))
(ω −ω f ,0 )

2 dω
−∞

∞

∫

=
π |<ψ f

0 | v(r) |ψ 0(r) >|2 t
22

f (ω f ,0) =<|Cf
1 |2>

 

 

We are allowed to write the integral over ω as ranging from -∞ to +∞ because the 

function shown in Fig. 4.4 is so sharply peaked around ωf,0 that extending the range of 

integration makes no difference. We are allowed to factor the f(ω) out of the integral as 

f(ωf,0) by assuming the light source’s distribution function f(ω) is very smoothly varying 

(i.e., not changing much) in the narrow range of frequencies around ωf,0 where the 

function in Fig. 4.4 is sharply peaked.  

 The result of this derivation of TDPT is the above expression for the average 

probability of observing a transition from state ψ0 to state 

€ 

ψ f
0 . This probability is seen to 

grow linearly with the time duration over which the system is exposed to the light 

source. Because we carried out this derivation within first-order perturbation theory, we 

should trust this result only under conditions where the effects of the perturbation are 

small. In the context of the example considered here, this means only for short times. 

That is, we should view  

 

  

€ 

π |<ψ f
0 | v(r) |ψ 0(r) >|2 t

22
f (ω f ,0) =<|Cf

1 |2> 
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as expressing the short-time estimate of the probability of a transition from ψ0 to 

€ 

ψ f
0  and 

 

  

€ 

Rate =
π |<ψ f

0 | v(r) |ψ 0(r) >|2

22
f (ω f ,0)  

 

(obtained as 

€ 

d <|Cf
1 |2>

dt
) as expressing the initial rate of such transitions within the first-

order TDPT approximation.  

 It should be noted that the rate expression given above will not be valid if the 

time duration t of the perturbation does not obey ωf,o t >> π; only when this condition is 

met an the function shown in Fig. 4.4 be integrated to generate a probability prediction 

that grows linearly with time. So, one has to be careful when using pulsed lasers of very 

short duration to not employ the simplified rate expression given above (e.g., 1 eV 

corresponds to a frequency of ca. 2.4 x1014 s-1, so to study an electronic transition of this 

energy, one needs to use a light source of duration significantly longer than 10-14 s to 

make use of the simplified result).  

 The working equations of TDPT, given above, allow one to estimate (because 

this is a first-order theory) the rates of transitions from one quantum state to another 

induced by a perturbation whose spatial dependence is characterized by v(r) and whose 

time dependence is sinusoidal. The same kind of coupling matrix elements 

€ 

<ψ f
0 | v(r) |ψ 0(r) > as we experienced in time-independent PT govern the selection rules 

and intensities for these transitions, so there is no need to repeat how symmetry can be 

used to analyze these integrals.  

Before closing this treatment of TDPT, it is useful to address a few issues that 

were circumvented in the derivation presented above.  

1. In some cases, one is interested in transitions from a particular initial state 

€ 

ψ 0(r)  into 

a manifold of states that exist in a continuum having energies between 

€ 

E f
0  and 

€ 

E f
0 + dE f

0. This occurs, for example, when treating photoionization of a neutral or 

photodetachment of an anion; here the ejected electron exists in a continuum wave 
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function whose density of states 

€ 

ρ(E f
0 )  is given by the formulas discussed in Chapter 2. 

In such cases, the expression given above for the rate is modified by summing over all 

final states having energies within 

€ 

E f
0 and 

€ 

E f
0 + dE f

0. Returning to the earlier expression 

 

  

€ 

ρ(E f
0 )
|<ψ f

0 | v(r) |ψ 0(r) >|2


2 f (ω)

sin2(1/2(ω −ω f ,0)t))
(ω −ω f ,0)

2 dω
−∞

∞

∫∫ dE f
0  

 

using 

€ 

dE f
0  = 

  

€ 

dω f ,0, and assuming the matrix elements 

€ 

<ψ f
0 | v(r) |ψ 0(r) > do not vary 

significantly within the narrow range between 

€ 

E f
0  and 

€ 

E f
0 + dE f

0, one arrives at a rate 

expression of 

 

  

€ 

Rate =
π |<ψ f

0 | v(r) |ψ 0(r) >|2

2
f (ω f ,0)ρ(E f

0 )  

 

which is much like we obtained earlier but now contains the density of states 

€ 

ρ(E f
0 ) . In 

some experiments, one may not have only a single state 

€ 

ψ 0(r)  that can absorb light of a 

given frequency ω; in such a situation, attenuation of the light source at this frequency 

can occur through absorptions from many initial states 

€ 

ψ 0(r)  into all possible final states 

€ 

ψ f
0  whose energy differs from that of the initial state by   

€ 

ω . In this case, the correct 

expression for the total rate of absorption of photons of energy   

€ 

ω  is obtained by 

averaging the above result over the probabilities Pi of the system being in various initial 

states (which we label 

€ 

ψi
0): 

 

  

€ 

Rate = Pi
π |<ψ f

0 | v(r) |ψ i
0(r) >|2

2
f (ω f ,i)ρ(E f

0 )
i
∑ δ(ω −ω f ,i). 

 

Here the 

€ 

δ(ω −ω f ,i) function guarantees that only states 

€ 

ψi
0 and 

€ 

ψ f
0  whose energies 

differ by   

€ 

ω  are permitted to enter the sum. The nature of the initial-state probability Pi 
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depends on what kind of experiment is being carried out. Pi might be a Boltzmann 

distribution if the initial states are in thermal equilibrium, for example.  

2. In Fig. 4.4 the function 

€ 

sin2(1/2(ω −ω f ,0)t))
(ω −ω f ,0 )

2  is plotted for one value of t as a function 

of ω. There also appear in this figure, dots that represent experimental data. These data 

were obtained by allowing a stream of HCN molecules to flow through a laser beam of 

width L with the laser frequency tuned to ω. From the flow velocity v of the HCN 

stream and the laser beam width L, one can determine the duration over which the 

molecules were exposed to the light source t = L/v. After the molecules exited the laser 

beam, they were probed to determine whether they were in an excited state. This 

experiment was repeated for various values of the frequency ω. The population of 

excited states was then plotted as a function of ω to obtain the data plotted in Fig. 4.4. 

This experiment is described in the text Molecules and Radiation, J. I. Steinfeld, MIT 

Press, Cambridge, Mass. (1981). This kind of experiment provided direct proof of the 

oscillatory frequency dependence observed in the population of excited states as 

predicted in our derivation of TDPT. 

3. To give an example of how one proceeds in TDPT when the perturbation is not 

oscillatory in time, let us consider an atom located at the origin of our coordinate system 

that experiences a collision with an ion of charge χ whose trajectory is described in Fig. 

4.5.  

 

X

Y

D

(vt,D,0)

 
 

Figure 4.5 An atom (at the origin X = Y = Z = 0) undergoing a collision with an ion of 

charge χ moving along the X-axis with constant velocity v. 
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As an approximation, we assume 

(1) that the ion moves in a straight line: X = vt, Y = D, Z = 0, characterized by an impact 

parameter D and a velocity v (this would be appropriate if the ion were moving so fast 

that it would not be deflected by interactions with the atom), 

(2) that the perturbation caused by the ion on the electrons of the atom at the origin can 

be represented by  

 

€ 

−
χ

| ri − R |i=1

N

∑  

 

where ri is the position of the ith electron in the atom and R = (vt, D, 0) is the position of 

the ion. The time dependence of the perturbation arises from the motion of the ion along 

the X-axis.  

  Writing the distance 

€ 

| ri − R | as 

 

€ 

| ri − R |= (xi − vt)
2 + (yi −D)

2 + zi
2  

 

and expanding in inverse powers of 

€ 

D2 + (vt)2 we can express the ion-atom interaction 

potential as 

 

€ 

−
χ

| ri − R |i=1

N

∑ = [ −χ

D2 + (vt)2
+
−χ(vtxi + Dyi + ri

2)
(D2 + (vt)2)3 / 2

+ ...]
i=1

N

∑ . 

 

The first term contains no factors dependent on the atom’s electronic coordinates, so it 

plays no role in causing electronic transitions. In the second term, the factor 

€ 

ri
2  can be 

neglected compared to the 

€ 

vtxi + Dyi terms because the ion is assumed to be somewhat 

distant from the atom’s valence electrons.  

To derive an equation for the probability of the atom undergoing a transition 

from 

€ 

ψ 0(r)  to 

€ 

ψ f
0 , one returns to the TDPT expression 
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€ 

−i
dCf

1 (t)
dt

=<ψ f
0 |V (t) |ψ 0(r) > exp(−it

(E 0 − E f
0 )


) 

 

and substitutes the above expression for the perturbation to obtain 

 

  

€ 

dCf
1 (t)
dt

=
−1
i

<ψ f
0 | −χ(vtxi + Dyi)

(D2 + (vt)2)3 / 2i=1

N

∑ |ψ 0(r) > exp(−it
(E 0 − E f

0 )


) . 

 

This is the equation that must be solved to evaluate 

€ 

Cf
1  by integrating from t = -∞ to t = 

+∞ (representing the full collision with the ion starting far to the left on the X-axis and 

proceeding far to the right). 

 There are two limiting cases in which the solution is straightforward. First, if the 

time duration of the collision (i.e., the time over which the ion is close to the atom) D/v 

is long compared to ωf,I where 

 

  

€ 

ω f ,0 =
(E 0 − E f

0 )


, 

 

then the integrand will oscillate repeatedly during the time D/v as a result of which the 

integral 

 

€ 

Cf
1 =

dCf
1 (t)
dt−∞

∞

∫ dt  

 

will be vanishingly small. So, in this so-called adiabatic case (i.e., with the ion moving 

slowly relative to the oscillation frequency ωf,0), electronic transitions should not be 

expected. In the other limit ωf,0D/v << 1, the factor 
  

€ 

exp(−it
(E 0 − E f

0 )


)  will remain 

approximately equal to unity, so the integration needed reduces to 
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€ 

Cf
1 =

−1
i

<ψ f
0 | −χ(vtxi + Dyi)

(D2 + (vt)2)3 / 2i=1

N

∑ |ψ 0(r) > dt
−∞

∞

∫ . 

 

The integral involving vtxi vanishes because vt is odd and the remainder of the integrand 

is an even function of t. The integral involving Dyi can be performed by trigonometric 

substitution (vt = D tan(θ) so the denominator reduces to D3 (1+(sinθ/cosθ)2)3/2 = 

D3/(cosθ)3) and gives 

 

  

€ 

Cf
1 =

−2χ
ivD

<ψ f
0 | yi

i=1

N

∑ |ψ 0(r) > . 

 

This result suggests that the probability of a transition  

 

  

€ 

|Cf
1 |2= 4χ 2


2v 2D2 |<ψ f

0 | yi
i=1

N

∑ |ψ 0(r) >|2  

 

should vary as the square of the ion’s charge and inversely with the speed of the 

collision. Of course, this result can not be trusted if the speed v is too low because, then 

the condition ωf,0D/v << 1 will not hold. This example shows how one must re-derive 

the equations of TDPT when dealing with perturbations whose time-dependence is not 

sinusoidal.  

 

4.6 Chapter Summary 

 In this Chapter, you should have learned about the following things: 

1. Rayleigh-Schrödinger perturbation theory with several example applications.  

2. The variational method for optimizing trial wave functions. 

3. The use of point group symmetry.  

4. Time dependent perturbation theory, primarily for sinusoidal perturbations 

characteristic of electromagnetic radiation. 


