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 Chapter 3. Characteristics of Energy Surfaces 
 

Born-Oppenheimer energy surfaces (or the empirical functions often used to 

represent them) possess important critical points that detail the properties of stable 

molecular structures, transition states, intersection seams, and reaction paths, all of 

which play central roles in the theoretical description of chemical reactions and 

molecular properties. In this Chapter, you will learn about these special points on the 

surfaces, how to find them, and what to do with them once you know them.  

 

3.1. Strategies for Geometry Optimization and Finding Transition States 

The extension of the harmonic and Morse vibrational models to polyatomic 

molecules requires that the multidimensional energy surface be analyzed in a manner 

that allows one to approximate the molecule’s motions in terms of many nearly 

independent vibrations. In this Section, we will explore the tools that one uses to carry 

out such an analysis of the surface, but first it is important to describe how one locates 

the minimum-energy and transition-state geometries on such surfaces. 

 

3.1.1 Finding Local Minima 

 Many strategies that attempt to locate minima on molecular potential energy 

landscapes begin by approximating the potential energy V for geometries (collectively 

denoted in terms of 3N Cartesian coordinates {qj}) in a Taylor series expansion about 

some “starting point” geometry (i.e., the current molecular geometry in an iterative 

process or a geometry that you guessed as a reasonable one for the minimum or transition 

state that you are seeking): 

 

V (qk) = V(0) + Σk (∂V/∂qk) qk + 1/2 Σj,k qj Hj,k qk + ...  . 

 

Here, V(0) is the energy at the current geometry, (∂V/∂qk) = gk is the gradient of the 

energy along the qk  coordinate, Hj,k = (∂2V/∂qj∂qk) is the second-derivative or Hessian 

matrix, and qk is the length of the “step” to be taken along this Cartesian direction. An 
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example of an energy surface in only two dimensions is given in the Figure 3.1 where 

various special aspects are illustrated. For example, minima corresponding to stable 

molecular structures, transition states (first order saddle points) connecting such minima, 

and higher order saddle points are displayed. 

 

 
 

Figure 3.1. Two-dimensional potential surface showing minima, transition states, and 

paths connecting them. 

 

If the only knowledge that is available is V(0) and the gradient components (e.g., 

computation of the second derivatives is usually much more computationally taxing than 

is evaluation of the gradient, so one is often forced to work without knowing the Hessian 

matrix elements), the linear approximation 

 

V (qk) = V(0) + Σk gK qk 

 

suggests that one should choose “step” elements qk that are opposite in sign from that of 

the corresponding gradient elements gk = (∂V/∂qk) if one wishes to move “downhill” 

toward a minimum.  The magnitude of the step elements is usually kept small in order to 

remain within the “trust radius” within which the linear approximation to V is valid to 

some predetermined desired precision (i.e., one wants to assure that Σk gK qk is not too 

large).  
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 When second derivative data is available, there are different approaches to 

predicting what step {qk} to take in search of a minimum, and it is within such Hessian-

based strategies that the concept of stepping along 3N-6 independent modes arises. We 

first write the quadratic Taylor expansion  

 

V (qk) = V(0) + Σk gk qk + 1/2 Σj,k qj Hj,k qk 

 

in matrix-vector notation 

 

V(q) = V(0) + qT •  g + 1/2 qT •  H •  q 

 

with the elements{qk} collected into the column vector q whose transpose is denoted qT.  

Introducing the unitary matrix U that diagonalizes the symmetric H matrix, the above 

equation becomes 

 

V(q) = V(0) + gT U  UT q + 1/2 qT  U UTHU UT q. 

 

Because UTHU is diagonal, we have 

 

(UTHU)k,l = δk,l  λk 

 

where λk are the eigenvalues of the Hessian matrix. For non-linear molecules, 3N-6 of 

these eigenvalues will be non-zero; for linear molecules, 3N-5 will be non-zero. The 5 or 

6 zero eigenvalues of H have eigenvectors that describe translation and rotation of the 

entire molecule; they are zero because the energy surface V does not change if the 

molecule is rotated or translated. It can be difficult to properly identify the 5 or 6 

translation and rotation eigenvalues of the Hessian because numerical precision issues 

often cause them to occur as very small positive or negative eigenvalues. If the molecule 

being studied actually does possess internal (i.e., vibrational) eigenvalues that are very 

small (e.g., the torsional motion of the methyl group in ethane has a very small energy 

barrier as a result of which the energy is very weakly dependent on this coordinate), one 
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has to be careful to properly identify the translation-rotation and internal eigenvalues. By 

examining the eigenvectors corresponding to all of the low Hessian eigenvalues, one can 

identify and thus separate the former from the latter. In the remainder of this discussion, I 

will assume that the rotations and translations have been properly identified and the 

strategies I discuss will refer to utilizing the remaining 3N-5 or 3N-6 eigenvalues and 

eigenvectors to carry out a series of geometry “steps” designed to locate energy minima 

and transition states.  

The eigenvectors of H form the columns of the array U that brings H to diagonal 

form: 

 

Σλ Hk,l  Ul,m  = λm Uk,m 

 

Therefore, if we define  

 

Qm  = Σk UT
m,k qk and Gm  = Σk UT

m,k gk 

 

to be the component of the step {qk} and of the gradient along the mth eigenvector of H, 

the quadratic expansion of V can be written in terms of steps along the 3N-5 or 3N-6 

{Qm} directions that correspond to non-zero Hessian eigenvalues: 

 

V (qk) = V(0) + Σm GT
m Qm + 1/2 Σm Qm λm Qm. 

 

The advantage to transforming the gradient, step, and Hessian to the eigenmode basis is 

that each such mode (labeled m) appears in an independent uncoupled form in the 

expansion of V. This allows us to take steps along each of the Qm  directions in an 

independent manner with each step designed to lower the potential energy when we are 

searching for minima (strategies for finding a transition state will be discussed below). 

 For each eigenmode direction, one can ask for what size step Q would the 

quantity GQ + 1/2 λ Q2 be a minimum. Differentiating this quadratic form with respect to 

Q and setting the result equal to zero gives 
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Qm = - Gm/λm ; 

 

that is, one should take a step opposite the gradient but with a magnitude given by the 

gradient divided by the eigenvalue of the Hessian matrix. If the current molecular 

geometry is one that has all positive λm values, this indicates that one may be “close” to a 

minimum on the energy surface (because all λm are positive at minima). In such a case, 

the step Qm = - Gm/λm  is opposed to the gradient along all 3N-5  or 3N-6 directions, much 

like the gradient-based strategy discussed earlier suggested. The energy change that is 

expected to occur if the step {Qm} is taken can be computed by substituting Qm = - Gm/λm  

into the quadratic equation for V: 

 

V(after step) = V(0) + Σm GT
m (- Gm/λm) + 1/2 Σm λm (- Gm/λm)2 

 

= V(0) -  1/2 Σm λm (- Gm/λm)2. 

 

This clearly suggests that the step will lead “downhill” in energy along each eigenmode 

as long as all of the λm values are positive. For example, if one were to begin with a good 

estimate for the equilibrium geometries of ethylene and propene, one could place these 

two molecules at a distance R0 longer than the expected inter-fragment equilibrium 

distance RvdW in the van der Waals complex formed when they interact. Because both 

fragments are near their own equilibrium geometries and at a distance R0 at which long-

range attractive forces will act to draw them together, a strategy such as outlined above 

could be employed to locate the van der Waals minimum on their energy surface. This 

minimum is depicted qualitatively in Fig. 3.1a.  
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Figure 3.1a Van der Waals complex (upper right) formed between ethylene and propene 

whose geometry might be located using the prescription outlined above. Product of the 

[2+2] cyclo-addition reaction, methyl-cyclobutane (lower right). 

 

 Beginning at R0, one would find that 3N-6 = 39 of the eigenvalues of the Hessian 

matrix are non-zero, where N = 15 is the total number of atoms in the ethylene-propene 

complex. Of these 39 non-zero eigenvalues, three will have eigenvectors describing 

radial and angular displacements of the two fragments relative to one another; the 

remaining 36 will describe internal vibrations of the complex. The eigenvalues belonging 

to the inter-fragment radial and angular displacements may be positive or negative 

(because you made no special attempt to orient the molecules at optimal angles and you 

may not have guessed very well at optimal the equilibrium inter-fragment distance), so it 

would probably be wisest to begin the energy-minimization process by using gradient 

information to step downhill in energy until one reaches a geometry R1 at which all 39 of 

the Hessian matrix eigenvalues are positive. From that point on, steps determined by both 

the gradient and Hessian (i.e., Qm = - Gm/λm) can be used unless one encounters a 

geometry at which one of the eigenvalues  λm is very small, in which case the step Qm = - 

Gm/λm along this eigenmode could be unrealistically large. In this case, it would be better 

to not take Qm = - Gm/λm for the step along this particular direction but to take a small step 

in the direction opposite to the gradient to improve chances of moving downhill. Such 

small-eigenvalue issues could arise, for example, if the torsion angle of propene’s methyl 
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group happened, during the sequence of geometry steps, to move into a region where 

eclipsed rather than staggered geometries are accessed. Near eclipsed geometries, the 

Hessian eigenvalue describing twisting of the methyl group is negative; near staggered 

geometries, it is positive.  

 Whenever one or more of the λm are negative at the current geometry, one is in a 

region of the energy surface that is not sufficiently close to a minimum to blindly follow 

the prescription Qm = - Gm/λm along all modes. If only one λm is negative, one anticipates 

being near a transition state (at which all gradient components vanish and all but one λm 

are positive with one λm negative). In such a case, the above analysis suggests taking a 

step Qm = - Gm/λm  along all of the modes having positive λm, but taking a step of opposite 

direction  (e.g., Qn = + Gn/λn  unless λn is very small in which case a small step opposite 

Gn is best) along the direction having negative λn if one is attempting to move toward a 

minimum.  This is what I recommended in the preceding paragraph when an eclipsed 

geometry (which is a transition state for rotation of the methyl group) is encountered if 

one is seeking an energy minimum.  

 

3.1.2 Finding Transition States 

On the other hand, if one is in a region where one Hessian eigenvalues is negative 

(and the rest are positive) and if one is seeking to find a transition state, then taking steps 

Qm = - Gm/λm along all of the modes Having positive eigenvalues and taking Qn = - Gn/λn  

along the mode having negative eigenvalue is appropriate. The steps Qm = - Gm/λm will 

act to keep the energy near its minimum along all but one direction, and the step Qn = - 

Gn/λn will move the system uphill in energy along the direction having negative 

curvature, exactly as one desires when “walking” uphill in a streambed toward a 

mountain pass.  

However, even the procedure just outlined for finding a transition state can 

produce misleading results unless some extent of chemical intuition is used. Let me give 

an example to illustrate this point. Let’s assume that one wants to find begin near the 

geometry of the van der Waals complex involving ethylene and propene and to then 

locate the transition state on the reaction path leading to the [2+2] cyclo-addition 

products methyl-cyclobutane as also shown in Fig. 3.1a. Consider employing either of 
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two strategies to begin the “walk” leading from the van der Waals complex to the desired 

transition state (TS): 

1. One could find the lowest (non-translation or non-rotation) Hessian eigenvalue and 

take a small step uphill along this direction to begin a streambed walk that might lead to 

the TS. Using the smallest Hessian eigenvalue to identify a direction to explore makes 

sense because it is along this direction that the energy surface rises least abruptly (at least 

near the geometry of the reactants).  

2. One could move the ethylene radially a bit (say 0.2 Å) closer to the propene to 

generate an initial geometry to begin the TS search. This makes sense because one knows 

the reaction must lead to inter-fragment carbon-carbon distances that are much shorter in 

the methyl-cyclobutane products than in the van der Waals complex.  

 The first strategy suggested above will likely fail because the series of steps 

generated by walking uphill along the lowest Hessian eigenmode will produce a path 

leading from eclipsed to staggered orientation of propene’s methyl group. Indeed, this 

path leads to a TS, but it is not the [2+2] cyclo-addition TS that we want. The take-home 

lesson here is that uphill streambed walks beginning at a minimum on the reactants’ 

potential energy surface may or may not lead to the desired TS. Such walks are not 

foolish to attempt, but one should examine the nature of the eigenmode being followed to 

judge whether displacements along this mode make chemical sense. Clearly, only 

rotating the methyl group is not a good way to move from ethylene and propene to 

methyl-cyclobutane. 

 The second strategy suggested above might succeed, but it would probably still 

need to be refined. For example, if the displacement of the ethylene toward the propene 

were too small, one would not have distorted the system enough to move it into a region 

where the energy surface has negative curvature along the reaction path as it must have as 

one approaches the TS. So, if the Hessian eigenmodes whose eigenvectors possess 

substantial inter-fragment radial displacements are all positive, one has probably not 

moved the two fragments close enough together. Probably the best way to then proceed 

would be to move the two fragments even closer (or, to move them along a linear 
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synchronous path1 connecting the reactants and products) until one finds a geometry at 

which a negative Hessian eigenvalue’s eigenmode has substantial components along what 

appears to be reasonable for the desired reaction path (i.e., substantial displacements 

leading to shorter inter-fragment carbon-carbon distances). Once one has found such a 

geometry, one can use the strategies detailed earlier (e.g., Qm = - Gm/λm) to then walk 

uphill along one mode while minimizing along the other modes to move toward the TS. If 

successful, such a process will lead to the TS at which all components of the gradient 

vanish and all but one eigenvalue of the Hessian is positive. The take-home lesson of the 

example is it is wise to try to first find a geometry close enough to the TS to cause the 

Hessian to have a negative eigenvalue whose eigenvector has substantial character along 

directions that make chemical sense for the reaction path.  

 In either a series of steps toward a minimum or toward a TS, once a step has been 

suggested within the eigenmode basis, one needs to express that step in terms of the 

original Cartesian coordinates qk so that these Cartesian values can be altered within the 

software program to effect the predicted step. Given values for the 3N-5 or 3N-6 step 

components Qm (n.b., the step components Qm along the 5 or 6 modes having zero 

Hessian eigenvalues can be taken to be zero because the would simply translate or rotate 

the molecule), one must compute the {qk}. To do so, we use the relationship 

 

Qm  = Σk UT
m,k qk 

 

and write its inverse (using the unitary nature of the U matrix): 

 

qk = Σm  Uk,m Qm 

 

to compute the desired Cartesian step components. 

In using the Hessian-based approaches outlined above, one has to take special 

care when one or more of the Hessian eigenvalues is small. This often happens when 

                                                
1 This is a series of geometries Rx defined through a linear interpolation (using a 
parameter 0 < x < 1) between the 3N Cartesian coordinates Rreactants belonging to the 
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i. one has a molecule containing “soft modes” (i.e., degrees of freedom along which the 

energy varies little), or 

ii. as one moves from a region of negative curvature into a region of positive curvature 

(or vice versa)- in such cases, the the curvature must move through or near zero. 

For these situations, the expression Qm = - Gm/λm can produce a very large step along the 

mode having small curvature. Care must be taken to not allow such incorrect artificially 

large steps to be taken.  

 

3.1.3 Energy Surface Intersections 

 I should note that there are other important regions of potential energy surfaces 

that one must be able to locate and characterize. Above, we focused on local minima and 

transition states. Later in this Chapter, and again in Chapter 8, we will discuss how to 

follow so-called reaction paths that connect these two kinds of stationary points using the 

type of gradient and Hessian information that we introduced earlier in this Chapter. 

It is sometimes important to find geometries at which two Born-Oppenheimer 

energy surfaces V1(q) and V2(q) intersect because such regions often serve as efficient 

funnels for trajectories or wave packets evolving on one surface to undergo so-called 

non-adiabatic transitions to the other surface.  Let’s spend a few minutes thinking about 

under what circumstances such surfaces can indeed intersect, because students often hear 

that surfaces do not intersect but, instead, undergo avoided crossings. To understand the 

issue, let us assume that we have two wave functions Φ1 and Φ2 both of which depend on 

3N-6 coordinates {q}. These two functions are not assumed to be exact eigenfunctions of 

the Hamiltonian H, but likely are chosen to approximate such eigenfunctions. To find the 

improved functions Ψ1 and Ψ2 that more accurately represent the eigenstates, one usually 

forms linear combinations of Φ1 and Φ2,  

 

ΨK = CK,1 Φ1 + CK,2 Φ2 

 

from which a 2x2 matrix eigenvalue problem arises: 

                                                                                                                                            
equilibrium geometry of the reactants and the corresponding coordinates Rproducts of the 
products:  Rx  = Rreactants x + (1-x) Rproducts 
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. 

 

This quadratic equation has two solutions 

 

. 

 

These two solutions can be equal (i.e., the two state energies can cross) only if the square 

root factor vanishes. Because this factor is a sum of two squares (each thus being positive 

quantities), this can only happen if two identities hold simultaneously (i.e., at the same 

geometry): 

 

H1,1 = H2,2 

 

and  

 

H1,2 = 0. 

 

The main point then is that in the 3N-6 dimensional space, the two states will generally 

not have equal energy. However, in a space of two lower dimensions (because there are 

two conditions that must simultaneously be obeyed: H1,1 = H2,2 and H1,2 = 0), their energies 

may be equal. They do not have to be equal, but it is possible that they are. It is based 

upon such an analysis that one usually says that potential energy surfaces in 3N-6 

dimensions may undergo intersections in spaces of dimension 3N-8. If the two states are 

of different symmetry (e.g., one is a singlet and the other a triplet), the off-diagonal 

element H1,2 vanishes automatically, so only one other condition is needed to realize 

crossing. So, we say that two states of different symmetry can cross in a space of 

dimension 3N-7. For a triatomic molecule with 3N-6 = 3 internal degrees of freedom, this 

means that surfaces of the same symmetry can cross in a space of dimension 1 (i.e., along 
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a line) while those of different symmetry can cross in a space of dimension 2 (i.e., in a 

plane).  An example of such a surface intersection is shown in Fig. 3.1c.  

 

 
Figure 3.1c Depiction of the 2A1 and 2B2 Born-Oppenheimer surfaces arising when Al 

(3s2 3p1; 2P) combines with H2 (σg
2; 1Σg

+) to form AlH2(2A1).  

 

 First considering the reaction of Al (3s2 3p1; 2P) with H2 (σg
2; 1Σg

+) to form 

AlH2(2A1) as if it were to occur in C2v symmetry, the Al atom’s occupied 3p orbital can be  

directed in either of three ways. If it is directed toward the midpoint of the H-H bond, it 

produces an electronic state of 2A1 symmetry. If it is directed out of the plane of the AlH2, 

it gives a state of 2B1 symmetry, and if it is directed parallel to the H-H bond, it generates 

a state of 2B2 symmetry.  The 2A1 state is, as shown in the upper left of Fig. 3.1c, 

repulsive as the Al atom’s 3s and 3p orbitals begin to overlap with the hydrogen 

molecule’s σg orbital at large R-values. The 2B2 state, in which the occupied 3p orbital is 

directed sideways parallel to the H-H bond, leads to a shallow van der Waals well at 

long-R but also moves to higher energy at shorter R-values.  

The ground state of the AlH2 molecule has its five valence orbitals occupied as 

follows: (i) two electrons occupy a bonding Al-H orbital of a1 symmetry, (ii) two 

electrons occupy a bonding Al-H orbital of b2 symmetry, and (iii) the remaining electron 
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occupies a non-bonding orbital of sp2 character localized on the Al atom and having a1 

symmetry. This a1
2 b2

2a1
1 orbital occupancy of the AlH2 molecule’s ground state does not 

correlate directly with any of the three degenerate configurations of the ground state of Al 

+ H2 which are a1
2 a1

2 a1
1, a1

2 a1
2 b1

1, and a1
2 a1

2 b2
1 as explained earlier. It is this lack of 

direct configuration correlation that generates the reaction barrier show in Fig. 3.1c.  

Let us now return to the issue of finding the lower-dimensional (3N-8 or 3N-7) 

space in which two surfaces cross, assuming one has available information about the 

gradients and Hessians of both of these energy surfaces V1 and V2. There are two 

components of characterizing the intersection space within which V1 = V2: 

(1) One has to first locate one geometry q0 lying within this space and then, 

(2) one has to sample nearby geometries (e.g., that might have lower total energy) lying 

within this subspace where V1 = V2.   

To locate a geometry at which the difference function F = [V1 –V2]2 passes through zero, 

one can employ conventional functional minimization methods, such as those detailed 

earlier when discussing how to find energy minima, to locate where F = 0, but now the 

function one is seeking to locate a minimum on is the potential energy surface difference.  

Once one such geometry (q0) has been located, one subsequently tries to follow 

the seam (i.e., for a triatomic molecule, this is the one-dimensional line of crossing; for 

larger molecules, it is a 3N-8 dimensional space) within which the function F remains 

zero. Professor David Yarkony (http://www.jhu.edu/~chem/yarkony/) has developed 

efficient routines for characterizing such subspaces (D. R. Yarkony, Acc. Chem. Res. 31, 

511-518 (1998)).  The basic idea is to parameterize steps away from (q0) in a manner that 

constrains such steps to have no component along either the gradient of (H1,1 –H2,2) or 

along the gradient of H1,2. Because V1 = V2 requires having both H1,1 = H2,2 and H1,2 = 0, 

taking steps obeying these two constraints allows one to remain within the subspace 

where H1,1 = H2,2 and H1,2 = 0 are simultaneously obeyed. Of course, it is a formidable task 

to map out the entire 3N-8 or 3N-7 dimensional space within which the two surfaces 

intersect, and this is essentially never done. Instead, it is common to try to find, for 

example, the point within this subspace at which the two surfaces have their lowest 

energy. An example of such a point is labeled RMECP in Fig. 3.1c, and would be of special 

interest when studying reactions taking place on the lower-energy surface that have to 
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access the surface-crossing seam to evolve onto the upper surface. The energy at RMECP 

reflects the lowest energy needed to access this surface crossing.  

Such intersection seam location procedures are becoming more commonly 

employed, but are still under very active development, so I will refer the reader to Prof. 

Yarkony’s paper cited above for further guidance.  For now, it should suffice to say that 

locating such surface intersections is an important ingredient when one is interested in 

studying, for example, photochemical reactions in which the reactants and products may 

move from one electronic surface to another, or thermal reactions that require the system 

to evolve onto an excited state through a surface crossing.   

 

3.2. Normal Modes of Vibration 

Having seen how one can use information about the gradients and Hessians on a 

Born-Oppenheimer surface to locate geometries corresponding to stable species and 

transition states, let us now move on to see how this same data is used to treat vibrations 

on this surface. 

 

 For a polyatomic molecule whose electronic energy's dependence on the 3N 

Cartesian coordinates of its N atoms, the potential energy V can be expressed 

(approximately) in terms of a Taylor series expansion about any of the local minima. Of 

course, different local minima (i.e., different isomers) will have different values for the 

equilibrium coordinates and for the derivatives of the energy with respect to these 

coordinates. The Taylor series expansion of the electronic energy is written as: 

 

V (qk) = V(0) + Σk (∂V/∂qk) qk + 1/2 Σj,k qj Hj,k qk + ...  , 

 

where V(0) is the value of the electronic energy at the stable geometry under study, qk is 

the displacement of the kth Cartesian coordinate away from this starting position, 

(∂V/∂qk) is the gradient of the electronic energy along this direction, and the Hj,k are the 

second derivative or Hessian matrix elements along these directions Hj,k = (∂2V/∂qj∂qk). 

If the geometry corresponds to a minimum or transition state, the gradient terms will all 

vanish, and the Hessian matrix will possess 3N - 5 (for linear species) or 3N -6 (for non-
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linear molecules) positive eigenvalues and 5 or 6 zero eigenvalues (corresponding to 3 

translational and 2 or 3 rotational motions of the molecule) for a minimum and one 

negative eigenvalues and 3N-6 or 3N-7 positive eigenvalues for a transition state.  

 

3.2.1. The Newton Equations of Motion for Vibration 

 

1. The Kinetic and Potential Energy Matrices 

 Truncating the Taylor series at the quadratic terms (assuming these terms 

dominate because only small displacements from the equilibrium geometry are of 

interest), one has the so-called harmonic potential: 

 

V (qk) = V(0) + 1/2 Σj,k qj Hj,k qk. 

 

The classical mechanical equations of motion for the 3N {qk} coordinates can be written 

in terms of the above potential energy and the following kinetic energy function: 

 

T = 1/2 Σj mj 

€ 

dq j

dt
 

 
 

 

 
 

2

, 

 

where 

€ 

dq j

dt   is the time rate of change of the coordinate qj and mj is the mass of the atom 

on which the jth Cartesian coordinate resides. The Newton equations thus obtained are: 

 

mj 

€ 

d2q j

dt 2
= −ΣkH j ,kqk  

 

where the force along the jth coordinate is given by minus the derivative of the potential 

V along this coordinate (∂V/∂qj) = Σk Hj,k qk within the harmonic approximation. 

 These classical equations can more compactly be expressed in terms of the time 

evolution of a set of so-called mass-weighted Cartesian coordinates defined as: 

 



 216 

xj = qj (mj)1/2, 

 

in terms of which the above Newton equations become 

 

€ 

d2x j

dt 2
= −ΣkH ' j,k xk  

 

and the mass-weighted Hessian matrix elements are  

 

H'j,k = Hj,k (mjmk)-1/2. 

 

2. The Harmonic Vibrational Energies and Normal Mode Eigenvectors 

 Assuming that the xj undergo some form of sinusoidal time evolution: 

 

xj(t) = xj (0) cos(ωt), 

 

and substituting this into the Newton equations produces a matrix eigenvalue equation: 

 

ω2 xj = Σk H'j,k xk 

 

in which the eigenvalues are the squares of the so-called normal mode vibrational 

frequencies and the eigenvectors give the amplitudes of motion along each of the 3N 

mass-weighted Cartesian coordinates that belong to each mode. Hence, to perform a 

normal-mode analysis of a molecule, one forms the mass-weighted Hessian matrix and 

then finds the 3N-5 or 3N-6 non-zero eigenvalues ωj
2 as well as the corresponding 

eigenvectors xk
(j).  

It is useful to note that, if this same kind of analysis were performed at a geometry 

corresponding to a transition state, 3N-6 or 3N-7 of the ωj
2 values would be positive, but 

one of them would be negative. The eigenvector corresponding to the negative 

eigenvalue of the mass-weighted Hessian points along a very important direction that we 

will discuss later; it is the direction of the so-called intrinsic reaction coordinate (IRC). 
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When reporting the eigenvalues ωj
2 at such a transition-state geometry, one often says that 

there is one imaginary frequency because one of the ωj
2 values is negative; this value of 

ωj
2 characterizes the curvature of the energy surface along the IRC at the transition state. 

The positive vibrational eigenvalues of transition-state geometries are used, as discussed 

in Chapter 8, to evaluate statistical mechanics partition functions for reaction rates, and 

the negative ωj
2 value plays a role in determining the extent of tunneling through the 

barrier on the reaction surface.  

 Within this harmonic treatment of vibrational motion, the total vibrational energy 

of the molecule is given as 

 

E(v1, v2, ··· v3N-5 or 6) = ∑
j=1

3N-5or6
hωj (vj + 1/2)  

 

a sum of 3N-5 or 3N-6 independent contributions one for each normal mode.  The 

corresponding total vibrational wave function 

 

Ψ =   Πj=1,3N-5or 6  ψvj (x
(j)) 

 

is a product of 3N-5 or 3N-6 harmonic oscillator functions ψvj (x
(j)) one for each normal 

mode. The energy gap between one vibrational level and another in which one of the vj 

quantum numbers is increased by unity (i.e., for fundamental vibrational transitions) is 

 

ΔEvj → vj + 1 = h ωj 

 

The harmonic model thus predicts that the "fundamental" (v=0 → v = 1) and "hot band" 

(v=1 → v = 2) transitions should occur at the same energy, and the overtone (v=0 → v=2) 

transitions should occur at exactly twice this energy. 

 One might wonder whether mass-weighted Cartesian coordinates would be better 

or more appropriate to use when locating minima and transition states on Born-

Oppenheimer energy surfaces. Although mass-weighted coordinates are indeed essential 
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for evaluating harmonic vibrational frequencies and, as we will see later, for tracing out 

so-called intrinsic reaction paths, their use produces the same minima and transition 

states as one finds using coordinates that are mass-weighted. This is because the 

condition that all components of the gradient 

 

      

€ 

∂V
∂q j

= 0 

 

of the energy surface vanish at a minimum or at a transition state will automatically be 

obeyed when expressed in terms of mass-weighted coordinates since 

 

    

€ 

∂V
∂q j

=
∂V
∂x j

∂x j

∂q j

=
∂V
∂x j

m j . 

 

Notice that this means the geometries of all local minima and transition states on a given 

Born-Oppenheimer surface will be exactly the same regardless of what isotopes appear in 

the molecule. For example, for the reactions 

 

    H-CN → H-NC or D-CN → D-NC, 

 

  H2C=O → H2 + CO or HDC=O → HD + CO or D2C=O → D2 + CO 

 

the geometries of the reactants, products, and transition states (for each of the distinct 

reactions) will not depend on the identity of the hydrogen isotopes. However, the 

harmonic vibrational frequencies will depend on the isotopes because the mass-weighted 

Hessian differs from the Hessian expressed in terms of non-mass-weighted coordinates. 

 

3.2.2. The Use of Symmetry 

 

1.  Symmetry Adapted Modes 
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 It is often possible to simplify the calculation of the normal mode harmonic 

frequencies and eigenvectors by exploiting molecular point group symmetry. For 

molecules that possess symmetry at a particular stable geometry, the electronic potential 

V(qj) displays symmetry with respect to displacements of symmetry equivalent Cartesian 

coordinates. For example, consider the water molecule at its C2v equilibrium geometry as 

illustrated in Fig. 3.2. A very small movement of the H2O molecule's left H atom in the 

positive x direction (ΔxL) produces the same change in the potential V as a 

correspondingly small displacement of the right H atom in the negative x direction  

(-ΔxR). Similarly, movement of the left H in the positive y direction (ΔyL) produces an 

energy change identical to movement of the right H in the positive y direction (ΔyR). 

 

 
 

Figure 3.2. Water molecule showing its two bond lengths and angle 

 

 The equivalence of the pairs of Cartesian coordinate displacements is a result of 

the fact that the displacement vectors are connected by the point group operations of the 

C2v group. In particular, reflection of ΔxL through the yz plane (the two planes are 

depicted in Fig. 3.3) produces - ΔxR, and reflection of ΔyL through this same plane yields 

ΔyR.  
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Figure 3.3. Two planes of symmetry of the water molecule. 

 

 More generally, it is possible to combine sets of Cartesian displacement 

coordinates {qk} into so-called symmetry adapted coordinates {QΓ,j}, where the index Γ 

labels the irreducible representation in the appropriate point group and j labels the 

particular combination of that symmetry (i.e., there may be more than one kind of 

displacement that has a given symmetry Γ).  These symmetry-adapted coordinates can be 

formed by applying the point group projection operators (that are treated in detail in 

Chapter 4) to the individual Cartesian displacement coordinates. 

 To illustrate, again consider the H2O molecule in the coordinate system described 

above.  The 3N = 9 mass-weighted Cartesian displacement coordinates (XL, YL, ZL, XO, 

YO, ZO, XR, YR, ZR) can be symmetry adapted by applying the following four projection 

operators: 

 

 

PA1 = 1 + σyz + σxy + C2 

Pb1 = 1 + σyz - σxy - C2 

Pb2 = 1 - σyz + σxy - C2 
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Pa2 = 1 - σyz - σxy + C2 

 

to each of the 9 original coordinates (the symbol σ denotes reflection through a plane and 

C2 means rotation about the molecule’s C2 axis).  Of course, one will not obtain  9 x 4 = 

36 independent symmetry adapted coordinates in this manner; many identical 

combinations will arise, and only 9 will be independent. 

The independent combinations of a1 symmetry (normalized to produce vectors of 

unit length) are 

 

Qa1,1  = 2-1/2 [XL - XR] 

Qa1,2  = 2-1/2 [YL + YR] 

Qa1,3  =  [YO] 

 

Those of b2 symmetry are 

 

Qb2,1  = 2-1/2 [XL + XR] 

Qb2,2  = 2-1/2 [YL - YR] 

Qb2,3  =  [XO], 

 

and the combinations 

 

Qb1,1  = 2-1/2 [ZL + ZR] 

Qb1,2 =  [ZO] 

 

are of b1 symmetry, whereas 

 

Qa2,1 = 2-1/2 [ZL - ZR] 

 

is of a2 symmetry. 
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2.  Point Group Symmetry of the Harmonic Potential 

 

 These nine symmetry-adapted coordinates QΓ,j are expressed as unitary 

transformations of the original mass-weighted Cartesian coordinates: 

 

QΓ,j = ∑
k

 
   CΓ,j,k Xk 

These transformation coefficients {CΓ,j,k} can be used to carry out a unitary 

transformation of the 9x9 mass-weighted Hessian matrix.  In so doing, we need only form 

blocks 

 

HΓj,l = 

€ 

kk'
∑ CΓ,j,k  Hk,k'  (mk mk')-1/2  CΓ,l,k' 

 

within which the symmetries of the two modes are identical.  The off-diagonal elements 

 

H Γ Γ'
j l     = Σk,k’  CΓ,j,k  Hk,k'  (mk mk')-1/2   CΓ',l,k' 

 

vanish because the potential V (qj) (and the full vibrational Hamiltonian H = T + V) 

commutes with the C2V point group symmetry operations. 

 As a result, the 9x9 mass-weighted Hessian eigenvalue problem can be 

subdivided into two 3x3 matrix problems (of a1 and b2 symmetry), one 2x2 matrix of b1 

symmetry and one 1x1 matrix of a2 symmetry.  For example, the a1 symmetry block 

Ha
1

j l
   is formed as follows: 
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The b2, b1 and a2 blocks are formed in a similar manner.  The eigenvalues of each of 

these blocks provide the squares of the harmonic vibrational frequencies, the eigenvectors 

provide the coefficients{CΓ,j,k } of the jth normal mode of symmetry Γ in terms of the 

mass-weighted Cartesian coordinates {Xk}. The relationship Xk = qk (mk)1/2 can then be 

used to express these coefficients in terms of the original Cartesian coordinates {qk}. 

 Regardless of whether symmetry is used to block diagonalize the mass-weighted 

Hessian, six (for non-linear molecules) or five (for linear species) of the eigenvalues will 

equal zero.  The eigenvectors belonging to these zero eigenvalues describe the 3 

translations and 2 or 3 rotations of the molecule.  For example, when expressed in terms 

of the original (i.e., non-mass-weighted) Cartesian coordinates 

 

1
3   [xL + xR + xO] 

1
3   [yL + yR + yO] 

1
3   [zL +zR + zO] 

 

are three translation eigenvectors of b2, a1 and b1 symmetry, and 

 

€ 

1
2
(zL − zR ) 
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is a rotation (about the y-axis in the Fig. 3.2) of a2 symmetry. This rotation vector can be 

generated by applying the a2 projection operator to zL or to zR. The other two rotations 

are of b1 and b2 symmetry and involve spinning of the molecule about the x- and z- axes 

of the Fig. 3.2, respectively. 

 So, of the 9 Cartesian displacements, 3 are of a1 symmetry, 3 of b2 , 2 of b1, and 1 

of a2. Of these, there are three translations (a1, b2, and b1) and three rotations (b2, b1, and 

a2). This leaves two vibrations of a1 and one of b2 symmetry. For the H2O example 

treated here, the three non-zero eigenvalues of the mass-weighted Hessian are therefore 

of a1 b2 , and a1 symmetry.  They describe the symmetric and asymmetric stretch 

vibrations and the bending mode, respectively as illustrated in Fig. 3.4. 

 

 

     
 

Figure 3.4. Symmetric and asymmetric stretch modes and bending mode of water 

 

 The method of vibrational analysis presented here can work for any polyatomic 

molecule.  One knows the mass-weighted Hessian and then computes the non-zero 

eigenvalues, which then provide the squares of the normal modes’ harmonic vibrational 

frequencies.  Point group symmetry can be used to block diagonalize this Hessian and to 

label the vibrational modes according to symmetry as we show in Fig. 3.5 for the CF4 

molecule in tetrahedral symmetry. 
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Figure 3.5. Symmetries of vibrations of methane  

 
3.3 Intrinsic Reaction Paths 

 

 As we will discuss in more detail in Chapter 8, there is a special path connecting 

reactants, transition states, and products that is especially useful to characterize in terms 

of energy surface gradients and Hessians. This is the Intrinsic Reaction Path (IRP). To 

construct an IRP, one proceeds as follows: 

a. Once a transition state (TS) has been located, its mass-weighted Hessian matrix is 

formed and diagonalized. The normalized eigenvector s belonging to the one negative 

eigenvalue of this matrix defines the initial direction(s) leading from the TS to either 

reactants or products (a unit vector along s is one direction; a unit vector along –s is the 

second).  

b. One takes a small step (i.e., a displacement of the Cartesian coordinates {qj} of the 

nuclei having a total length L) along the direction s, and this direction is taken to define 
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the first step along the intrinsic reaction coordinate (IRC) that will eventually lead to the 

IRP. When s is expressed in terms of the its components {sj} along the Cartesian 

coordinates {qj} 

     

s = Σj sj qj 

 

the displacements {δqj} can be expressed as  

 

    δqj  = L sj. 

 

c. One re-evaluates the gradient and Hessian at this new geometry (call it {q0}), forms the 

mass-weighted Hessian at {q0}, and identifies the eigenmode having negative curvature. 

The gradient along this direction will no longer vanish (as it did at the TS), and the 

normalized eigenvector of this mode is now used to define the continuation of the 

direction s along the IRC. 

d.  One then minimizes the energy along the 3N-6 or 3N-7 coordinates transverse to s. 

This can be done by expressing the energy in terms of the corresponding eigenmodes 

{Qk} of the mass-weighted Hessian 

 

   

€ 

V = [gkδQk +
1
2
ωk
2

k=1

3N−6or3N−7

∑ δQk
2] 

 

where gk is the component of the gradient of the energy along the eigenmode Qk and 

€ 

ωk
2 

is the eigenvalue of the mass-weighted Hessian for this mode. This energy minimization 

transverse to s is designed to constrain the “walk” downhill from the TS at (or near) the 

minimum in the streambed along which the IRC is evolving. After this energy 

minimization step, the Cartesian coordinates will be defined as {q1}. 

e. At {q1}, one re-evaluates the gradient and Hessian, and proceeds as in step (c) above.  

This process is continued, generating a series of geometries {q0, q1 , q2 , … qK} that 

define points on the IRC. At each of these geometries, the gradient will have its largest 

component (excluding at the TS, where all components vanish) along the direction of s 
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because the energy minimization process will cause its components transverse to s to (at 

least approximately) vanish. 

f. Eventually, a geometry will be reached at which all 3N-5 or 3N-6 of the eigenvalues of 

the mass-weighted Hessian are positive; here, one is evolving into a region where the 

curvature along the IRC is positive and suggests one may be approaching a minimum. 

However, at this point, there will be one eigemode (the one whose eigenvalue just 

changed from negative to positive) along which the gradient has its largest component. 

This eigenmode will continue to define the IRC’s direction s. 

g. One continues by taking a small step along s downhill in energy, after which the 

energy is minimized along the modes transverse to s. This process is continued until the 

magnitude of the gradient (which always points along s) becomes small enough that one 

can claim to have reached a minimum.  

h. The process described above will lead from the TS to either the reactants or products, 

and will define one branch of the IRP. To find the other branch, one returns to step (b) 

and begins the entire process again but now taking the first small step in the opposite 

direction (i.e., along the negative of the eigenvector of the mass-weighted Hessian at the 

TS). Proceeding along this path, one generates the other branch of the IRP; the series of 

geometries leading from reactants, through the TS, to products defines the full IRP. At 

any point along this path, the direction s is the direction of the IRC.  

 

 This process for generating the IRP can be viewed as generating a series of 

Cartesian coordinates {qk} lying along a continuous path {q(s)} that is the solution of the 

following differential equation 

 

€ 

dq j (s)
ds

= −
g j (s)
| g(s) |

 

 

where qj is the jth Cartesian coordinate, gj is the energy gradient along this Cartesian 

coordinate, |g| is the norm of the total energy gradient, and s is the continuous parameter 

describing movement along the IRC. The initial condition appropriate to solving this 

differential equation is that the initial step (i.e., at s = 0) is to be directed along (for one 
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branch of the IRP) or opposed to (for the other branch) the eigenmode of the mass-

weighted Hessian having negative eigenvalue at the TS.  

 

3.4 Chapter Summary 

 In this Chapter, you should have learned about the following things: 

1. Characteristics of Born-Oppenheimer energy surfaces, and how to find local minima, 

transition states, intrinsic reaction paths, and intersection seams on them. 

2. The harmonic normal modes of vibration extracted from the mass weighted Hessian 

matrix, and how symmetry can be used to simplify the problem. 

 

 


