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Solutions

1.

a. First determine the eigenvalues:

det 



-1 - λ  2

 2  2 - λ   = 0

(-1 - λ)(2 - λ) - 22 = 0

-2 + λ - 2λ + λ2 - 4 = 0

λ2 - λ - 6 = 0

(λ - 3)(λ + 2) = 0

λ = 3    or    λ = -2.

Next, determine the eigenvectors.  First, the eigenvector associated with eigenvalue -2:





-1  2

 2  2  



C11

C21   = -2 



C11

C21  

-C11 + 2C21 = -2C11

C11 = -2C21  (Note: The second row offers no new information, e.g. 2C11

+ 2C21 = -2C21)

C112 + C212 = 1  (from normalization)

(-2C21)2 + C212 = 1

4C212 + C212 = 1

5C212 = 1

C212 = 0.2

C21 = 0.2 , and therefore C11 = -2 0.2 .
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For the eigenvector associated with eigenvalue 3:





-1  2

 2  2  



C12

C22   = 3 



C12

C22  

-C12 + 2C22 = 3C12

-4C12 = -2C22

C12 = 0.5C22  (again the second row offers no new information)

C122 + C222 = 1  (from normalization)

(0.5C22)2 + C222 = 1

0.25C222 + C222 = 1

1.25C222 = 1

C222 = 0.8

C22 = 0.8  = 2 0.2 , and therefore C12 = 0.2 .

Therefore the eigenvector matrix becomes:







-2 0.2 0.2

0.2 2 0.2
  

b. First determine the eigenvalues:

det 








-2 - λ  0  0

 0 -1 - λ  2
 0  2  2 - λ

  = 0

det [ ]-2 - λ   det 



-1 - λ  2

 2  2 - λ   = 0

From 1a, the solutions then become -2, -2, and 3.  Next, determine the eigenvectors.  First

the eigenvector associated with eigenvalue 3 (the third root):
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-2  0  0

 0 -1  2
 0  2  2

 








C11

C21
C31

  = 3 








C11

C21
C31

 

-2 C13 = 3C13  (row one)

C13 = 0

-C23 + 2C33 = 3C23  (row two)

2C33 = 4C23

C33 = 2C23  (again the third row offers no new information)

C132 + C232 + C332 = 1  (from normalization)

0 + C232 + (2C23)2 = 1

5C232 = 1

C23 = 0.2 , and therefore C33 = 2 0.2 .

Next, find the pair of eigenvectors associated with the degenerate eigenvalue of -2.  First,

root one eigenvector one:

-2C11 = -2C11  (no new information from row one)

-C21 + 2C31 = -2C21  (row two)

C21 = -2C31  (again the third row offers no new information)

C112 + C212 + C312 = 1  (from normalization)

C112 + (-2C31)2 + C312 = 1

C112 + 5C312 = 1

C11 =

1 - 5C312  (Note: There are now two equations with three unknowns.) 

Second, root two eigenvector two:
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-2C12 = -2C12  (no new information from row one)

-C22 + 2C32 = -2C22  (row two)

C22 = -2C32  (again the third row offers no new information)

C122 + C222 + C322 = 1  (from normalization)

C122 + (-2C32)2 + C322 = 1

C122 + 5C322 = 1

C12 = (1- 5C32
2)1/2 (Note: again, two equations in three unknowns)

C11C12 + C21C22 + C31C32 = 0  (from orthogonalization)

Now there are five equations with six unknowns.

Arbitrarily choose C11 = 0

(whenever there are degenerate eigenvalues, there are not unique eigenvectors because

the degenerate eigenvectors span a 2- or more- dimensional space, not two unique

directions. One always is then forced to choose one of the coefficients and then determine

all the rest; different choices lead to different final eigenvectors but to identical spaces

spanned by these eigenvectors).

C11 = 0 = 1 - 5C312 

5C312 = 1

C31 = 0.2 

C21 = -2 0.2 

C11C12 + C21C22 + C31C32 = 0  (from orthogonalization)

0 + -2 0.2(-2C32)  + 0.2 C32 = 0

5C32 = 0
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C32 = 0, C22 = 0, and C12 = 1

Therefore the eigenvector matrix becomes:









0 1 0

-2 0.2 0 0.2
0.2 0 2 0.2

  

2.

a. K.E. = 
mv2

2   = 



m

m  
mv2

2   = 
(mv)2

2m   = 
p2

2m 

K.E. = 
1

2m(px2 + py2 + pz2) 

K.E. = 
1

2m













h−

i
∂
∂x

2
 + 






h−

i
∂
∂y

2
 + 






h−

i
∂
∂z

2
 

K.E. = 
-h−2

2m





∂2

∂x2 + 
∂2

∂y2 + 
∂2

∂z2  

b. p = mv = ipx + jpy + kpz

p = 







i





h−

i
∂
∂x  + j






h−

i
∂
∂y  + k






h−

i
∂
∂z  

where i, j, and k are unit vectors along the x, y, and z axes.

c. Ly = zpx - xpz

Ly = z 





h−

i
∂
∂x   - x 






h−

i
∂
∂z  
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3.

First derive the general formulas for 
∂
∂x  , 

∂
∂y  , 

∂
∂z  in terms of r,θ, and φ, and 

∂
∂r  , 

∂
∂θ  ,

and 
∂
∂φ  in terms of x,y, and z.  The general relationships are as follows:

x = r Sinθ Cosφ r2 = x2 + y2 + z2

y = r Sinθ Sinφ sinθ = 
x2 + y2

x2 + y2 + z2
 

z = r Cosθ cosθ = 
z

x2 + y2 + z2
 

tanφ = 
y
x 

First 
∂
∂x  , 

∂
∂y  , and 

∂
∂z  from the chain rule:

∂
∂x  = 



∂r

∂x  
y,z

 
∂
∂r  + 



∂θ

∂x  
y,z

 
∂
∂θ  + 



∂φ

∂x  
y,z

 
∂
∂φ  ,

∂
∂y  = 



∂r

∂y  
x,z

 
∂
∂r  + 



∂θ

∂y  
x,z

 
∂
∂θ  + 



∂φ

∂y  
x,z

 
∂
∂φ  ,

∂
∂z  = 



∂r

∂z  
x,y

 
∂
∂r  + 



∂θ

∂z  
x,y

 
∂
∂θ  + 



∂φ

∂z  
x,y

 
∂
∂φ  .

Evaluation of the many "coefficients" gives the following:





∂r

∂x  
y,z

 = Sinθ Cosφ , 



∂θ

∂x  
y,z

 = 
Cosθ Cosφ

r   , 



∂φ

∂x  
y,z

 = - 
Sinφ

r Sinθ  ,





∂r

∂y  
x,z

 = Sinθ Sinφ , 



∂θ

∂y  
x,z

 = 
Cosθ Sinφ

r   , 



∂φ

∂y  
x,z

 = 
Cosφ
r Sinθ  ,





∂r

∂z  
x,y

 = Cosθ , 



∂θ

∂z  
x,y

 = - 
Sinθ

r   , and  



∂φ

∂z  
x,y

 = 0 .
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Upon substitution of these "coefficients":

∂
∂x  = Sinθ Cosφ 

∂
∂r  + 

Cosθ Cosφ
r  

∂
∂θ  - 

Sinφ
r Sinθ 

∂
∂φ  ,

∂
∂y  = Sinθ Sinφ 

∂
∂r  + 

Cosθ Sinφ
r  

∂
∂θ  + 

Cosφ
r Sinθ 

∂
∂φ  , and

∂
∂z  = Cosθ 

∂
∂r  - 

Sinθ
r  

∂
∂θ  + 0 

∂
∂φ .

Next 
∂
∂r  , 

∂
∂θ  , and 

∂
∂φ  from the chain rule:

∂
∂r  = 



∂x

∂r  
θ,φ

 
∂
∂x  + 



∂y

∂r  
θ,φ

 
∂
∂y  + 



∂z

∂r  
θ,φ

 
∂
∂z  ,

∂
∂θ  = 



∂x

∂θ  
r,φ

 
∂
∂x  + 



∂y

∂θ  
r,φ

 
∂
∂y  + 



∂z

∂θ  
r,φ

 
∂
∂z  , and

∂
∂φ  = 



∂x

∂φ  
r,θ

 
∂
∂x  + 



∂y

∂φ  
r,θ

 
∂
∂y  + 



∂z

∂φ  
r,θ

 
∂
∂z .

Again evaluation of the the many "coefficients" results in:





∂x

∂r  
θ,φ

 = 
x

x2 + y2 + z2
  , 



∂y

∂r  
θ,φ

 = 
y

x2 + y2 + z2
  ,





∂z

∂r  
θ,φ

 = 
z

x2 + y2 + z2
  , 



∂x

∂θ  
r,φ

 = 
x z

x2 + y2
  , 



∂y

∂θ  
r,φ

 = 
y z

x2 + y2
  ,





∂z

∂θ  
r,φ

 = - x2 + y2  , 



∂x

∂φ  
r,θ

 = -y , 



∂y

∂φ  
r,θ

 = x , and 



∂z

∂φ  
r,θ

 = 0

Upon substitution of these "coefficients":

∂
∂r  = 

x

x2 + y2 + z2
 
∂
∂x  + 

y

x2 + y2 + z2
 
∂
∂y 

 + 
z

x2 + y2 + z2
 
∂
∂z 
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∂
∂θ  = 

x z

x2 + y2
 
∂
∂x  + 

y z

x2 + y2
 
∂
∂y  - x2 + y2 

∂
∂z 

∂
∂φ  = -y 

∂
∂x  + x 

∂
∂y  + 0 

∂
∂z .

Note, these many "coefficients" are the elements which make up the Jacobian matrix used

whenever one wishes to transform a function from one coordinate representation to

another.  One very familiar result should be in transforming the volume element dxdydz

to r2Sinθdrdθdφ.  For example:

⌡⌠f(x,y,z)dxdydz  =

⌡


⌠

f(x(r,θ,φ),y(r,θ,φ),z(r,θ,φ))













∂x

∂r θφ




∂x

∂θ
rφ





∂x

∂φ
rθ





∂y

∂r θφ




∂y

∂θ
rφ





∂y

∂φ
rθ





∂z

∂r θφ




∂z

∂θ
rφ





∂z

∂φ
rθ

drdθdφ 

a. Lx = 
h−
i  








 y 
∂
∂z - z 

∂
∂y  

Lx = 
h−
i 





 rSinθSinφ 





Cosθ 
∂
∂r - 

Sinθ
r  

∂
∂θ  

 -
h−
i 





 rCosθ 





SinθSinφ 
∂
∂r + 

CosθSinφ
r  

∂
∂θ + 

Cosφ
rSinθ 

∂
∂φ  

Lx = - 
h−
i 





 Sinφ 
∂
∂θ + CotθCosφ 

∂
∂φ  

b. Lz = 
h−
i  

∂
∂φ  = - ih− 

∂
∂φ 

Lz = 
h−
i  





 -y 
∂
∂x + x 

∂
∂y  
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4.

            B                       dB/dx                d2B/dx2             

i. 4x4 - 12x2 + 3 16x3 - 24x 48x2 - 24

ii. 5x4 20x3 60x2

iii. e3x + e-3x 3(e3x - e-3x) 9(e3x + e-3x)

iv. x2 - 4x + 2 2x - 4 2

v. 4x3 - 3x 12x2 - 3 24x

B(v.) is an eigenfunction of A(i.):

(1-x2) 
d2

dx2  - x 
d
dx  B(v.) =

(1-x2) (24x) - x (12x2 - 3)

24x - 24x3 - 12x3 + 3x

-36x3 + 27x

-9(4x3 -3x)  (eigenvalue is -9)

B(iii.) is an eigenfunction of A(ii.):

d2

dx2  B(iii.) =

9(e3x + e-3x)  (eigenvalue is 9)

B(ii.) is an eigenfunction of A(iii.):

x 
d
dx  B(ii.) =

x (20x3)



10

20x4

4(5x4)  (eigenvalue is 4)

B(i.) is an eigenfunction of A(vi.):

d2

dx2  - 2x 
d
dx  B(i) =

(48x2 - 24) - 2x (16x3 - 24x)

48x2 - 24 - 32x4 + 48x2

-32x4 + 96x2 - 24

-8(4x4 - 12x2 + 3)  (eigenvalue is -8)

B(iv.) is an eigenfunction of A(v.):

x 
d2

dx2  + (1-x) 
d
dx  B(iv.) =

x (2) + (1-x) (2x - 4)

2x + 2x - 4 - 2x2 + 4x

-2x2 + 8x - 4

-2(x2 - 4x +2)  (eigenvalue is -2)

5.
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z

x y

z x

y
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x

y

x

z

y

z

6.
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7.
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i. In ammonia, the only "core" orbital is the N 1s and this becomes an a1 orbital in C3v

symmetry.  The N 2s orbitals and 3 H 1s orbitals become 2 a1 and an e set of orbitals.

The remaining N 2p orbitals also become 1 a1 and a set of e orbitals.  The total valence

orbitals in C3v symmetry are 3a1 and 2e orbitals.

ii. In water, the only core orbital is the O 1s and this becomes an a1 orbital in C2v

symmetry.  Placing the molecule in the yz plane allows us to further analyze the

remaining valence orbitals as: O 2pz = a1, O 2py as b2, and O 2px as b1.  The (H 1s + H

1s) combination is an a1 whereas the (H 1s - H 1s) combination is a b2.

iii. Placing the oxygens of H2O2 in the yz plane (z bisecting the oxygens) and the (cis)

hydrogens distorted slightly in +x and -x directions allows us to analyze the orbitals as

follows.  The core O 1s + O 1s combination is an a orbital whereas the O 1s - O 1s

combination is a b orbital.  The valence orbitals are: O 2s + O 2s = a, O 2s - O 2s = b, O

2px + O 2px = b, O 2px - O 2px = a, O 2py + O 2py = a, O 2py - O 2py = b, O 2pz + O 2pz

= b, O 2pz - O 2pz = a, H 1s + H 1s = a, and finally the H 1s - H 1s = b.

iv. For the next two problems we will use the convention of choosing the z axis as

principal axis for the D∞h, D2h, and C2v point groups and the xy plane as the horizontal

reflection plane in Cs symmetry.

D∞h D2h C2v Cs

N 1s σg ag a1 a'

N 2s σg ag a1 a'

N 2px πxu b3u b1 a'
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N 2py πyu b2u b2 a'

N 2pz σu b1u a1 a''

9.

a. Ψn(x) = 



2

L

1
2  Sin

nπx
L  

Pn(x)dx = | |Ψn
2(x) dx

The probability that the particle lies in the interval 0 ≤ x ≤ 
L
4  is given by:

Pn = ⌡⌠
0

L
4

Pn(x)dx  = 



2

L ⌡
⌠

0

L
4

Sin2



nπx

L dx 

This integral can be integrated to give :

Pn = 



L

nπ 



2

L ⌡
⌠

0

nπ
4

Sin2



nπx

L d



nπx

L  

Pn = 



L

nπ 



2

L ⌡⌠
0

nπ
4

Sin2θdθ 

Pn = 
2

nπ









- 
1
4Sin2θ + 

θ
2 




nπ

4

0
 

= 
2

nπ





- 
1
4Sin

2nπ
4  + 

nπ
(2)(4)  
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= 
1
4  - 

1
2πn  Sin



nπ

2  

b. If n is even, Sin



nπ

2   = 0 and Pn = 
1
4  .

If n is odd and n = 1,5,9,13, ... Sin



nπ

2   = 1

and Pn = 
1
4  - 

1
2πn 

If n is odd and n = 3,7,11,15, ... Sin



nπ

2   = -1

and Pn = 
1
4  + 

1
2πn 

The higher Pn is when n = 3.  Then Pn = 
1
4  + 

1
2π3 

Pn = 
1
4  + 

1
6π  = 0.303

c. Ψ(t) = e

-iHt
h−  [ ]aΨn + bΨm   = aΨne

-iEnt

h−   + bΨme

-iEmt

h−  

HΨ = aΨnEne

-iEnt

h−   + bΨmEme

iEmt

h−  

< >Ψ|H|Ψ   = |a|2En + |b|2Em + a*be

i(En-Em)t

h− < >Ψn|H|Ψm  

+ b*ae

-i(Em-En)t

h− < >Ψm|H|Ψn  

Since < >Ψn|H|Ψm   and < >Ψm|H|Ψn   are zero,

< >Ψ|H|Ψ   = |a|2En + |b|2Em  (note the time independence)
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d. The fraction of systems observed in Ψn is |a|2.  The possible energies measured

are En and Em.  The probabilities of measuring each of these energies is |a|2 and |b|2.

e. Once the system is observed in Ψn, it stays in Ψn.

f. P(En) =  < >Ψn|Ψ  
2
 = |cn|2

cn = ⌡

⌠

0

L

2
LSin



nπx

L
30
L5 x(L-x)dx

    = 
60
L6⌡

⌠

0

L

x(L-x)Sin



nπx

L  dx

    = 
60
L6






L⌡
⌠

0

L

xSin



nπx

L dx - ⌡
⌠

0

L

x2Sin



nπx

L dx  

These integrals can be evaluated to give:

cn = 
60
L6








L





L2

n2π2Sin



nπx

L  - 
Lx
nπCos



nπx

L 

L

0
  

- 
60
L6












2xL2

n2π2Sin



nπx

L  - 





n2π2x2

L2  - 2
L3

n3π3Cos



nπx

L 

L

0
  

cn = 
60
L6 { L3

n2π2( )Sin(nπ) - Sin(0)  

- 
L2

nπ( )LCos(nπ) - 0Cos0  )

- ( 2L2

n2π2( )LSin(nπ) - 0Sin(0)  
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- ( )n2π2 - 2
L3

n3π3 Cos(nπ)

+ 





n2π2(0)

L2  - 2
L3

n3π3 Cos(0))}

cn = L-3 60 {- 
L3

nπ Cos(nπ) + ( )n2π2 - 2
L3

n3π3 Cos(nπ)

+ 
2L3

n3π3 }

cn = 60





- 
1

nπ(-1)n + ( )n2π2 - 2
1

n3π3(-1)n + 
2

n3π3  

cn = 60









-1

nπ + 
1

nπ - 
2

n3π3 (-1)n + 
2

n3π3  

cn = 
2 60
n3π3  )( )-(-1)n + 1  

|cn|2 = 
4(60)
n6π6  )( )-(-1)n + 1 2 

If n is even then cn = 0

If n is odd then cn = 
(4)(60)(4)

n6π6   = 
960
n6π6 

The probability of making a measurement of the energy and obtaining one of the

eigenvalues, given by:

En = 
n2π2h−2

2mL2   is:

P(En) = 0 if n is even

P(En) = 
960
n6π6  if n is odd
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g. < >Ψ|H|Ψ   = ⌡
⌠

0

L





30

L5

1
2
x(L-x)






-h−2

2m 
d2

dx2 



30

L5

1
2
x(L-x)dx 

 = 



30

L5 



-h−2

2m ⌡

⌠

0

L

x(L-x)







 
d2

dx2 ( )xL-x2 dx 

 = 





-15h−2

mL5 ⌡⌠
0

L
x(L-x)(-2)dx 

 = 





30h−2

mL5 ⌡⌠
0

L

xL-x2dx 

 = 





30h−2

mL5 





L
x2

2 -
x3

3 

L

0
  

 = 





30h−2

mL5 



L3

2 -
L3

3  

 = 





30h−2

mL2 



1

2-
1
3  

 = 
30h−2

6mL2  = 
5h−2

mL2 

10.

< >Ψ|H|Ψ   = ∑
ij

   Ci*e

iEit

h− < >Ψi|H|Ψj  e

-iEjt

h−  Cj
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Since < >Ψi|H|Ψj   = Ejδij

< >Ψ|H|Ψ   = ∑
j

   Cj*CjEje

i(Ej-Ej)t

h−  

< >Ψ|H|Ψ   = ∑
j

Cj*CjEj  (not time dependent) 

For other properties:

< >Ψ|A|Ψ   = ∑
ij

   Ci*e

iEit

h− < >Ψi|A|Ψj  e

-iEjt

h−  Cj

but, < >Ψi|A|Ψj   does not necessarily = ajδij because the Ψj  are not eigenfunctions of A

unless [A,H] = 0.

< >Ψ|A|Ψ   = ∑
ij

   Ci*Cje

i(Ei-Ej)t

h− < >Ψi|A|Ψj
 

Therefore, in general, other properties are time dependent.

11.

a. The lowest energy level for a particle in a 3-dimensional box is when n1 = 1, n2 = 1,

and n3 = 1.  The total energy (with L1 = L2 = L3) will be:

Etotal = 
h2

8mL2( )n12 + n22 + n32   = 
3h2

8mL2 
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Note that n = 0 is not possible.  The next lowest energy level is when one of the three

quantum numbers equals 2 and the other two equal 1:

n1 = 1, n2 = 1, n3 = 2

n1 = 1, n2 = 2, n3 = 1

n1 = 2, n2 = 1, n3 = 1.

Each of these three states have the same energy:

Etotal = 
h2

8mL2( )n12 + n22 + n32   = 
6h2

8mL2 

Note that these three states are only degenerate if L1 = L2 = L3.

b. ↑       distortion→     

     ↑  

       ↑↓  ↑↓  

L1 = L2 = L3        L3 ≠ L1 = L2

For L1 = L2 = L3, V = L1L2L3 = L13,

Etotal(L1) = 2ε1 + ε2

= 
2h2

8m





12

L12 + 
12

L22 + 
12

L32   + 
1h2

8m





12

L12 + 
12

L22 + 
22

L32  

= 
2h2

8m





3

L12   + 
1h2

8m





6

L12   = 
h2

8m





12

L12   

For L3 ≠ L1 = L2, V = L1L2L3 = L12L3, L3 = V/L12

Etotal(L1) = 2ε1 + ε2
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= 
2h2

8m





12

L12 + 
12

L22 + 
12

L32   + 
1h2

8m





12

L12 + 
12

L22 + 
22

L32  

= 
2h2

8m





2

L12 + 
1

L32  + 
1h2

8m





2

L12 + 
4

L32  

= 
2h2

8m





2

L12 + 
1

L32 + 
1

L12 + 
2

L32  

= 
2h2

8m





3

L12 + 
3

L32   = 
h2

8m





6

L12 + 
6

L32  

In comparing the total energy at constant volume of the undistorted box (L1 = L2 = L3)

versus the distorted box (L3 ≠ L1 = L2) it can be seen that:

h2

8m





6

L12 + 
6

L32   ≤ 
h2

8m
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L12    as long as L3 ≥ L1.

c. In order to minimize the total energy expression, take the derivative of the

energy with respect to L1 and set it equal to zero. 
∂Etotal

∂L1
  = 0

∂
∂L1

 





h2

8m





6

L12 + 
6

L32   = 0

But since V = L1L2L3 = L12L3, then L3 = V/L12.  This substitution gives:

∂
∂L1

 





h2

8m





6

L12 + 
6L14

V2   = 0







h2

8m





(-2)6

L13  + 
(4)6L13

V2   = 0









-
12
L13 + 

24L13

V2   = 0
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24L13

V2   = 





12

L13  

24L16 = 12V2

L16 = 
1
2 V2 = 

1
2( )L12L3

2  = 
1
2 L14L32

L12 = 
1
2 L32

L3 = 2 L1

d. Calculate energy upon distortion:

cube: V = L13, L1 = L2 = L3 = (V)
1
3 

distorted: V = L12L3 = L12 2 L1 = 2 L13

L3 = 2



V

2

1
3
  ≠ L1 = L2 = 



V

2

1
3
 

∆E = Etotal(L1 = L2 = L3) - Etotal(L3 ≠ L1 = L2)

= 
h2

8m





12

L12   - 
h2

8m





6

L12 + 
6

L32  

= 
h2

8m





12

V2/3 - 
6(2)1/3

V2/3  + 
6(2)1/3

2V2/3  

= 
h2

8m





12 - 9(2)1/3

V2/3  

Since V = 8Å3, V2/3 = 4Å2 = 4 x 10-16 cm2 , and 
h2

8m  = 6.01 x 10-27 erg cm2:

∆E = 6.01 x 10-27 erg cm2






12 - 9(2)1/3

4 x 10-16 cm2  
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∆E = 6.01 x 10-27 erg cm2



0.66

4 x 10-16 cm2  

∆E = 0.99 x 10-11 erg

∆E = 0.99 x 10-11 erg 



1 eV

1.6 x 10-12 erg  

∆E = 6.19 eV

12.

a. H = 
-h−2

2m 





∂2

∂x2 + 
∂2

∂y2  (Cartesian coordinates)

Finding 
∂
∂x  and

∂
∂y  from the chain rule gives:

∂
∂x  = 



∂r

∂x  
y
 
∂
∂r  + 



∂φ

∂x  
y
 
∂
∂φ   ,  

∂
∂y  = 



∂r

∂y  
x
 
∂
∂r  + 



∂φ

∂y  
x
 
∂
∂φ  ,

Evaluation of the "coefficients" gives the following:





∂r

∂x  
y
 = Cosφ , 



∂φ

∂x  
y
 = - 

Sinφ
r   ,





∂r

∂y  
x
 = Sinφ , and  



∂φ

∂y  
x
 = 

Cosφ
r   ,

Upon substitution of these "coefficients":

∂
∂x  = Cosφ 

∂
∂r  - 

Sinφ
r  

∂
∂φ  = - 

Sinφ
r  

∂
∂φ ; at fixed r.

∂
∂y  = Sinφ 

∂
∂r  + 

Cosφ
r  

∂
∂φ  = 

Cosφ
r  

∂
∂φ ; at fixed r.
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∂2

∂x2  = 





- 
Sinφ

r  
∂
∂φ 





- 
Sinφ

r  
∂
∂φ  

      = 
Sin2φ

r2  
∂2

∂φ2  + 
SinφCosφ

r2  
∂
∂φ  ; at fixed r.

∂2

∂y2  = 



Cosφ

r  
∂
∂φ 



Cosφ

r  
∂
∂φ  

      = 
Cos2φ

r2  
∂2

∂φ2  - 
CosφSinφ

r2  
∂
∂φ  ; at fixed r.

∂2

∂x2  + 
∂2

∂y2  = 
Sin2φ

r2  
∂2

∂φ2  + 
SinφCosφ

r2  
∂
∂φ  + 

Cos2φ
r2  

∂2

∂φ2  - 
CosφSinφ

r2  
∂
∂φ 

      = 
1
r2 

∂2

∂φ2  ; at fixed r.

So, H = 
-h−2

2mr2 
∂2

∂φ2 (cylindrical coordinates, fixed r)

   = 
-h−2

2I  
∂2

∂φ2 

The Schrödinger equation for a particle on a ring then becomes:

HΨ = EΨ

-h−2

2I  
∂2Φ
∂φ2   = EΦ

∂2Φ
∂φ2   = 



-2IE

h−2  Φ

The general solution to this equation is the now familiar expression:

Φ(φ) = C1e-imφ + C2eimφ , where m = 



2IE

h−2

1
2
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Application of the cyclic boundary condition, Φ(φ) = Φ(φ+2π), results in the quantization

of the energy expression: E = 
m2h−2

2I   where m = 0, ±1, ±2, ±3, ...  It can be seen that the

±m values correspond to angular momentum of the same magnitude but opposite

directions.  Normalization of the wavefunction (over the region 0 to 2π) corresponding to

+ or - m will result in a value of 



1

2π

1
2
  for the normalization constant.

∴ Φ(φ) = 



1

2π

1
2
 eimφ

  
(±4)2h−2

2I   

  
(±3)2h−2

2I   

  
(±2)2h−2

2I   

↑↓  ↑↓  
(±1)2h−2

2I   

   ↑↓  
(0)2h−2

2I   

b. 
h−2

2m  = 6.06 x 10-28 erg cm2

h−2

2mr2  = 
6.06 x 10-28 erg cm2

(1.4 x 10-8 cm)2   

= 3.09 x 10-12 erg

∆E = (22 - 12) 3.09 x 10-12 erg = 9.27 x 10-12 erg
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but ∆E = hν = hc/λ So λ = hc/∆E

λ = 
(6.63 x 10-27 erg sec)(3.00 x 1010 cm sec-1)

9.27 x 10-12 erg  

   = 2.14 x 10-5 cm = 2.14 x 103 Å

Sources of error in this calculation include:

i. The attractive force of the carbon nuclei is not included in the Hamiltonian.

ii. The repulsive force of the other π-electrons is not included in the Hamiltonian.

iii. Benzene is not a ring.

iv. Electrons move in three dimensions not one.

13.

Ψ(φ,0) = 
4

3π  Cos2φ.

This wavefunction needs to be expanded in terms of the eigenfunctions of the angular

momentum operator, 





-ih−
∂
∂φ  .  This is most easily accomplished by an exponential

expansion of the Cos function.

Ψ(φ,0) = 
4

3π



eiφ + e-iφ

2 



eiφ + e-iφ

2  

 = 



1

4
4

3π( )e2iφ + e-2iφ + 2e(0)iφ  
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The wavefunction is now written in terms of the eigenfunctions of the angular

momentum operator, 





-ih−
∂
∂φ  , but they need to include their normalization constant, 

1

2π

.

Ψ(φ,0) = 



1

4  
4

3π 2π 






1

2π
 e2iφ + 

1

2π
 e-2iφ + 2

1

2π
 e(0)iφ  

 = 







1
6 






1

2π
 e2iφ + 

1

2π
 e-2iφ + 2

1

2π
 e(0)iφ  

Once the wavefunction is written in this form (in terms of the normalized eigenfunctions

of the angular momentum operator having mh−  as eigenvalues) the probabilities for

observing angular momentums of 0h− , 2h− , and -2h−  can be easily identified as the squares

of the coefficients of the corresponding eigenfunctions.

P2h−  = 







1
6

2
  = 

1
6 

P-2h−  = 







1
6

2
  = 

1
6 

P0h−  = 







2
1
6

2
  = 

4
6 

14.

a. 
1
2 mv2 = 100 eV 



1.602 x 10-12 erg

1 eV  

v2 = 





(2)1.602 x 10-10 erg

 9.109 x 10-28g  
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v = 0.593 x 109 cm/sec

The length of the N2 molecule is 2Å = 2 x 10-8 cm.

v = 
d
t  

t = 
d
v  = 

2 x 10-8 cm
0.593 x 109 cm/sec  = 3.37 x 10-17 sec

b. The normalized ground state harmonic oscillator can be written as:

Ψ0 = 



α

π  
1/4

e-αx2/2, where α = 





kµ

h−2

1
2
  and x = r - re

Calculating constants;

αN2 = 





(2.294 x 106 g sec-2)(1.1624 x 10-23 g)

(1.0546 x 10-27 erg sec)2

1
2
 

= 0.48966 x 1019 cm-2 = 489.66 Å-2

For N2: Ψ0(r) = 3.53333Å
-
1
2
 e-(244.83Å-2)(r-1.09769Å)2

αN2
+ = 






(2.009 x 106 g sec-2)(1.1624 x 10-23 g)

(1.0546 x 10-27 erg sec)2

1
2
 

= 0.45823 x 1019 cm-2 = 458.23 Å-2

For N2+: Ψ0(r) = 3.47522Å
-
1
2
 e-(229.113Å-2)(r-1.11642Å)2

c. P(v=0) =  < >Ψv=0(N2+)Ψv=0(N2)
2
 

Let P(v=0) = I2 where I = integral:

I= ⌡
⌠

-∞

+∞

(3.47522Å
-
1
2
e-(229.113Å-2)(r-1.11642Å)2) .
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(3.53333Å
-
1
2
 e-(244.830Å-2)(r-1.09769Å)2)dr

Let C1 = 3.47522Å
-
1
2
 , C2 = 3.53333Å

-
1
2
 ,

A1 = 229.113Å-2, A2 = 244.830Å-2,

r1 = 1.11642Å, r2 = 1.09769Å, 

I = C1C2
⌡⌠

-∞

+∞

e-A1(r-r1)2e-A2(r-r2)2
 dr .

Focusing on the exponential:

-A1(r-r1)2-A2(r-r2)2 = -A1(r2 - 2r1r + r12) - A2(r2 - 2r2r + r22)

     = -(A1 + A2)r2 + (2A1r1 + 2A2r2)r - A1r12 - A2r22

Let A = A1 + A2,

B = 2A1r1 + 2A2r2,

C = C1C2, and

D = A1r12 + A2r22 .

I = C ⌡⌠

-∞

+∞

e-Ar2 + Br - D dr

   = C ⌡⌠

-∞

+∞

e-A(r-r0)2 + D' dr

where -A(r-r0)2 + D' = -Ar2 + Br - D

-A(r2 - 2rr0 + r02) + D' = -Ar2 + Br - D

such that, 2Ar0 = B
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-Ar02 + D' = -D

and, r0 = 
B

2A 

D' = Ar02 - D = A
B2

4A2  - D = 
B2

4A  - D .

I = C ⌡⌠

-∞

+∞

e-A(r-r0)2 + D' dr

   = CeD' ⌡⌠

-∞

+∞

e-Ay2 dy

   = CeD'
π
A

 

Now back substituting all of these constants:

I = C1C2
π

A1 + A2
  exp






(2A1r1 + 2A2r2)2

4(A1 + A2)  - A1r12 - A2r22  

I = (3.47522)(3.53333)
π

(229.113) + (244.830)  

. exp



(2(229.113)(1.11642) + 2(244.830)(1.09769))2

4((229.113) + (244.830))  

 . exp( ) - (229.113)(1.11642)2 - (244.830)(1.09769)2  

I = 0.959

P(v=0) = I2 = 0.92, so there is a 92% probability.

15.
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a. Eν = 



h−2k

µ

1
2






ν + 
1
2  

∆E = Eν+1 - Eν

     = 



h−2k

µ

1
2









ν +1 + 
1
2 - ν - 

1
2   = 



h−2k

µ  

     = 





(1.0546 x 10-27 erg sec)2(1.87 x 106 g sec-2)

6.857 g / 6.02 x 1023

1
2
 

     = 4.27 x 10-13 erg

∆E = 
hc
λ  

λ = 
hc
∆E  = 

(6.626 x 10-27 erg sec)(3.00 x 1010 cm sec-1)
4.27 x 10-13 erg  

   = 4.66 x 10-4 cm

1
λ  = 2150 cm-1

b. Ψ0 = 



α

π  
1/4

e-αx2/2

< >x   = < >Ψv=0xΨv=0  

 = ⌡⌠
-∞

+∞
Ψ0*xΨ0dx 

 = ⌡
⌠

-∞

+∞





α

π
1/2

xe-αx2dx 

 = ⌡
⌠

-∞

+∞





α

-α2π
1/2

e-αx2d(-αx2) 
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 = 



-1

απ  
1/2

e-αx2 +∞
−∞  = 0

< >x2   = < >Ψv=0x2Ψv=0  

 = ⌡⌠
-∞

+∞
Ψ0*x2Ψ0dx 

 = ⌡
⌠

-∞

+∞





α

π
1/2

x2e-αx2dx 

 = 2



α

π  
1/2 ⌡⌠

0

+∞
x2e-αx2dx

 

 = 2



α

π  
1/2





1

21+1α 



π

α
 1/2

 = 



1

2α  

∆x = (<x2> - <x>2)1/2.= 



1

2α  

     = 





h−

2 kµ

1
2
  

     = 





(1.0546 x 10-27 erg sec)2

4(1.87 x 106 g sec-2)(6.857 g / 6.02 x 1023)

1
4
 

     = 3.38 x 10-10 cm = 0.0338Å

c. ∆x = 





h−

2 kµ

1
2
  

The smaller k and µ become, the larger the uncertainty in the internuclear distance

becomes.  Helium has a small µ and small attractive force between atoms.  This results in
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a very large ∆x.  This implies that it is extremely difficult for He atoms to "vibrate" with

small displacement as a solid, even as absolute zero is approached.

16.

a. W = ⌡⌠
-∞

∞
φ*Hφdx 

W = 



2b

π

1
2
 ⌡

⌠

-∞

∞

e
-bx2









-
h−2

2m 
d2

dx2 + a|x| e
-bx2

dx 

d2

dx2  e
-bx2

  = 
d
dx





-2bx e
-bx2

 

       = ( )-2bx 





-2bx e
-bx2

  + 





e
-bx2

( )-2b  

       = 





4b2x2 e
-bx2

  + 





-2b e
-bx2

 

Making this substitution results in the following three integrals:

W = 



2b

π

1
2
 





-
h−2

2m  ⌡
⌠

-∞

∞

e
-bx2

 4b2x2 e
-bx2

dx  +





2b

π

1
2
 





-
h−2

2m  ⌡
⌠

-∞

∞

e
-bx2

 -2b e
-bx2

dx  +
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2b

π

1
2
 ⌡
⌠

-∞

∞

e
-bx2

a|x|e
-bx2

dx 

   = 



2b

π

1
2
 





-
2b2h−2

m  ⌡
⌠

-∞

∞

x2e
-2bx2

dx  + 



2b

π

1
2
 



bh−2

m  ⌡
⌠

-∞

∞

e
-2bx2

dx  +





2b

π

1
2
  a ⌡

⌠

-∞

∞

|x|e
-2bx2

dx 

   = 



2b

π

1
2
 





-
2b2h−2

m   2 



1

222b  
π
2b  + 



2b

π

1
2
 



bh−2

m   2 



1

2  
π
2b  +





2b

π

1
2
  a 



0!

2b  

   = 





-
bh−2

m  



1

2   + 



bh−2

m   + 



2b

π

1
2




a

2b  

W = 



bh−2

2m   + a 



1

2bπ

1
2
 

b. Optimize b by evaluating 
dW
db   = 0

dW
db   = 

d
db










bh−2

2m  + a 



1

2bπ

1
2

 

= 



h−2

2m   - 
a
2 



1

2π

1
2
 b

-
3
2
 

So,  
a
2 



1

2π

1
2
 b

-
3
2
  = 



h−2

2m   or, b
-
3
2
  = 



h−2

2m  
2
a 



1

2π
-
1
2
  = 



h−2

ma  2π  ,
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and, b = 






ma

2π h−2

2
3
  .  Substituting this value of b into the expression for W gives:

W = 



h−2

2m 





ma

2π h−2

2
3
  + a 



1

2π

1
2







ma

2π h−2

-
1
3
 

    = 



h−2

2m 





ma

2π h−2

2
3
  + a 



1

2π

1
2







ma

2π h−2

-
1
3
 

    = 2
-
4
3
 π

-
1
3
h−

2
3 a

2
3
 m

-
1
3
  + 2

-
1
3
 π

-
1
3
h−

2
3 a

2
3
 m

-
1
3
 

    = 
 


2
-
4
3π

-
1
3
 + 2

-
1
3π

-
1
3

h−
2
3
 a

2
3
 m

-
1
3
  = 

3
2 ( )2π

-
1
3
h−

2
3
 a

2
3
 m

-
1
3
 

    = 0.812889106h−
2
3
 a

2
3
 m-1/3 which is in error by only 0.5284% !!!!!

17.

a. H = -
h−2

2m 
d2

dx2  + 
1
2 kx2

φ = 
15
16  a

-
5
2
 (a2 - x2)  for -a < x < a

φ = 0 for |x| ≥ a

⌡⌠
-∞

+∞
φ*Hφdx 
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 = ⌡
⌠

-a

+a

15
16 a

-
5
2
 (a2 - x2)








-
h−2

2m 
d2

dx2 + 
1
2kx2 15

16 a
-
5
2
 (a2 - x2) dx 

 = 
 
15
16   a-5 ⌡


⌠

-a

+a

(a2 - x2)







-
h−2

2m 
d2

dx2 + 
1
2kx2 (a2 - x2) dx 

 = 
 
15
16   a-5 ⌡


⌠

-a

+a

(a2 - x2)





-
h−2

2m
d2

dx2(a2 - x2) dx 

 + 
 
15
16   a-5 ⌡

⌠

-a

+a

(a2 - x2)
1
2kx2(a2 - x2) dx 

 = 
 
15
16   a-5 ⌡

⌠

-a

+a

(a2 - x2)





-
h−2

2m  (-2) dx 

 + 
 
15
32   a-5 ⌡⌠

-a

+a

(kx2)(a4 -2a2x2 + x4) dx 

 = 



15h−2

16m   a-5 ⌡⌠
-a

+a

(a2 - x2)  dx + 
 
15
32   a-5 ⌡⌠

-a

+a

a4kx2 -2a2kx4 + kx6 dx 

 = 



15h−2

16m   a-5








a2x


 a

-a
 - 

1
3 x3



 a

-a
  

 + 
 
15
32   a-5







a4k

3  x3


 a

-a
 -

2a2k
5  x5



 a

-a
 + 

k
7 x7



 a

-a
   

 = 



15h−2

16m   a-5





2a3 - 
2
3 a3   + 

 
15
32   a-5



2a7k

3  -
4a7k

5  + 
2k
7  a7  
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 = 
 
15
16   a-5



4h−2

3m a3 + 
a7k
3  -

2a7k
5  + 

k
7 a7  

 = 
 
15
16   a-5







4h−2

3m a3 + 



k

3 - 
2k
5  + 

k
7  a7  

 = 
 
15
16   a-5







4h−2

3m a3 + 



35k

105 - 
42k
105 + 

15k
105  a7  

 = 
 
15
16   a-5







4h−2

3m a3 + 



8k

105  a7   = 
5h−2

4ma2  + 
ka2

14  

b. Substituting a = b



h−2

km

1
4
  into the above expression for E we obtain:

E = 
5h−2

4b2m



km

h−2

1
2
  + 

kb2

14 



h−2

km

1
2
 

   = h−  k

1
2
  m

-
1
2
 



5

4 b-2 + 
1
14 b2  

c. E = 
5h−2

4ma2  + 
ka2

14  

dE
da  = -

10h−2

4ma3  + 
2ka
14   = -

5h−2

2ma3  + 
ka
7   = 0

5h−2

2ma3  = 
ka
7   and 35h− 2 = 2mka4

 So, a4 = 
35h−2

2mk  , or a = 



35h−2

2mk

1
4
 

Therefore φbest = 
15
16 



35h−2

2mk
-
5
8
 











35h−2

2mk

1
2
 - x2   ,
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and Ebest = 
5h−2

4m



2mk

35h−2

1
2
  + 

k
14



35h−2

2mk

1
2
  = h−  k

1
2
  m

-
1
2
 



5

14

1
2
  .

d. 
Ebest - Etrue

Etrue
  = 

h− k

1
2
 m

-
1
2
 







 
5
14

1
2
 - 0.5

h− k

1
2
 m

-
1
2
 0.5

 

 = 
 

5
14

1
2
 - 0.5

0.5   = 
0.0976

0.5   = 0.1952 = 19.52%

18.

a. H0 ψ
(0)
lm  = 

L2

2mer02  ψ
(0)
lm  = 

L2

2mer02  Yl,m(θ,φ)

   = 
1

2mer02 h− 2 l(l+1) Yl,m(θ,φ)

E
(0)
lm  = 

h−2

2mer02  l(l+1)

b. V = -eεz = -eεr0Cosθ

E
(1)
00   = < >Y00|V|Y00   = < >Y00|-eεr0Cosθ|Y00  

       = -eεr0< >Y00|Cosθ|Y00  

Using the given identity this becomes:

E
(1)
00   = -eεr0< >Y00|Y10

(0+0+1)(0-0+1)
(2(0)+1)(2(0)+3)  +

-eεr0< >Y00|Y-10
(0+0)(0-0)

(2(0)+1)(2(0)-1) 
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The spherical harmonics are orthonormal, thus < >Y00|Y10   = < >Y00|Y-10   = 0, and

E
(1)
00   = 0.

E
(2)
00   = ∑

lm≠00
  
 < >Ylm|V|Y00

2

E
(0)
00 - E

(0)
lm

 

< >Ylm|V|Y00   = -eεr0< >Ylm|Cosθ|Y00  

Using the given identity this becomes:

< >Ylm|V|Y00   = -eεr0< >Ylm|Y10
(0+0+1)(0-0+1)
(2(0)+1)(2(0)+3)  +

-eεr0< >Ylm|Y-10
(0+0)(0-0)

(2(0)+1)(2(0)-1) 

< >Ylm|V|Y00   = -
eεr0

3 < >Ylm|Y10  

This indicates that the only term contributing to the sum in the expression for E
(2)
00   is

when l=1, and m=), otherwise < >Ylm|V|Y00   vanishes (from orthonormality).  In

quantum chemistry when using orthonormal functions it is typical to write the term

< >Ylm|Y10   as a delta function, for example δlm,10 , which only has values of 1 or 0; δij

= 1 when i = j and 0 when i ≠ j.  This delta function when inserted into the sum then

eliminates the sum by "picking out" the non-zero component.  For example,

< >Ylm|V|Y00   = -
eεr0

3
  δlm,10 , so

E
(2)
00   = ∑

lm≠00

  
e2ε2r02

3  

δlm
'
10

2

E
(0)
00 - E

(0)
lm

   =  
e2ε2r02

3  
1

E
(0)
00 - E

(0)
10
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E
(0)
00   = 

h−2

2mer02  0(0+1) = 0 and E
(0)
10   = 

h−2

2mer02  1(1+1) = 
h−2

mer02 

Inserting these energy expressions above yields:

E
(2)
00   = -

e2ε2r02

3  
mer02

h−2   = -
mee2ε2r04

3h−2  

c. E
   
00  = E

(0)
00   + E

(1)
00   + E

(2)
00   + ...

        = 0 + 0 - 
mee2ε2r04

3h−2  

        = -
mee2ε2r04

3h−2  

α = -
∂2E
∂2ε   = 

∂2

∂2ε 





mee2ε2r04

3h−2  

    = 
2mee2r04

3h−2  

d. α = 
2(9.1095x10-28g)(4.80324x10-10g

1
2
cm

3
2
s-1)2r04

3(1.05459x10-27 g cm2 s-1)2  

α = r04 12598x106cm-1 = r04 1.2598Å-1

αH = 0.0987 Å3

αCs = 57.57 Å3

19.
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1πg1πg

3σu

3σg

1πu1πu

2σu

2σg

1σu

1σg

2pz 2py 2px
2px 2py 2pz

2s 2s

1s1s

N2 NN

The above diagram indicates how the SALC-AOs are formed from the 1s,2s, and 2p N

atomic orbitals.  It can be seen that there are 3σg, 3σu, 1πux, 1πuy, 1πgx, and 1πgy SALC-

AOs.  The Hamiltonian matrices (Fock matrices) are given.  Each of these can be

diagonalized to give the following MO energies:

3σg; -15.52, -1.45, and -0.54 (hartrees)

3σu; -15.52, -0.72, and 1.13

1πux; -0.58

1πuy; -0.58

1πgx; 0.28

1πgy; 0.28
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It can be seen that the 3σg orbitals are bonding, the 3σu orbitals are antibonding, the 1πux

and 1πuy orbitals are bonding, and the 1πgx and 1πgy orbitals are antibonding.

20.

Using these approximate energies we can draw the following MO diagram:

H

C

H

z

y
x

2b2

4a1

1b1

3a1

1b2

2a1

1a1

H2C

1b2

1a1

3a11b21b1

2a1

1a1

2py

1σu

1σg

2pz2px

2s

1s

This MO diagram is not an orbital correlation diagram but can be used to help generate
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one.  The energy levels on each side (C and H2) can be "superimposed" to generate the

reactant side of the orbital correlation diagram and the center CH2 levels can be used to

form the product side.  Ignoring the core levels this generates the following orbital

correlation diagram.

Orbital-correlation diagram for the reaction C + H2  -----> CH2 (bent)

a1(bonding)

b2(antibonding)
a1(antibonding)

b1(2pπ)

a1(non-bonding)

b2(bonding)

CH2 (bent)C + H2

σg(a1)

2s(a1)

σu(b2)

2px(b1)     2py(b2)     2pz(a1)

21.
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z

y

x

P

F

F

F

F

F

9

6
8

7

5

4

3

2

1

a. The two F p orbitals (top and bottom) generate the following reducible

representation:

D3h      E  2C3  3C2   σh  2S3  3σv

Γp        2    2     0     0     0     2

This reducible representation reduces to 1A1' and 1A2''  irreducible representations.

Projectors may be used to find the symmetry-adapted AOs for these irreducible

representations.

φa1' = 
1

2
(f1 - f2)  

φa2'' = 
1

2
(f1 + f2)  

b. The three trigonal F p orbitals generate the following reducible representation:

D3h      E  2C3  3C2   σh  2S3  3σv

Γp        3    0     1     3     0     1

This reducible representation reduces to 1A1' and 1E'  irreducible representations.
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Projectors may be used to find the symmetry-adapted -AOs for these irreducible

representations (but they are exactly analogous to the previous few problems):

φa1' = 
1

3
(f3 + f4 + f5)  

φe' = (1/6)-1/2 (2 f3 – f4 –f5)

φe' = 
1

2
(f4 - f5) .

c. The 3 P sp2 orbitals generate

the following reducible representation:

D3h      E  2C3  3C2   σh  2S3  3σv

Γsp2      3     0        1     3    0     1

This reducible representation reduces to 1A1' and 1E'  irreducible representations.  Again,

projectors may be used to find the symmetry-adapted -AOs for these irreducible

representations:

φa1' = 
1

3
(f6 + f7 + f8)  

φe' = 
1

6
(2f6 - f7 - f8) 

φe' = 
1

2
(f7 - f8) .

The leftover P pz orbital generate the following irreducible representation:

D3h      E  2C3  3C2   σh  2S3  3σv

Γpz
      1    1    -1    -1    -1     1

This irreducible representation is  A2''
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φa2'' = f9.

Drawing an energy level diagram using these SALC-AOs would result in the following:

| |

| || |

| |

| |

a'1

e'*

e'

a''2

a''2
*

a'1
*

a'1

22.

a. For non-degenerate point groups, one can simply multiply the representations (since

only one representation will be obtained):

 a1 ⊗ b1 = b1

Constructing a "box" in this case is unnecessary since it would only contain a single row.

Two unpaired electrons will result in a singlet (S=0, MS=0), and three triplets (S=1,

MS=1; S=1, MS=0; S=1, MS=-1).  The states will be: 3B1(MS=1), 3B1(MS=0), 3B1(MS=-

1), and 1B1(MS=0).

b. Remember that when coupling non-equivalent linear molecule angular momenta, one

simple adds the individual Lz values and vector couples the electron spin.  So, in this case
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(1πu12πu1), we have ML values of 1+1, 1-1, -1+1, and -1-1 (2, 0, 0, and -2).  The term

symbol ∆ is used to denote the spatially doubly degenerate level (ML=±2) and there are

two distinct spatially non-degenerate levels denoted by the term symbol Σ (ML=0)

Again, two unpaired electrons will result in a singlet (S=0, MS=0), and three triplets

(S=1, MS=1;S=1, MS=0;S=1, MS=-1).  The states generated are then:

1∆ (ML=2); one state (MS=0),

1∆ (ML=-2); one state (MS=0),

3∆ (ML=2); three states (MS=1,0, and -1),

3∆ (ML=-2); three states (MS=1,0, and -1),

1Σ (ML=0); one state (MS=0),

1Σ (ML=0); one state (MS=0),

3Σ (ML=0); three states (MS=1,0, and -1), and

3Σ (ML=0); three states (MS=1,0, and -1).

c. Constructing the "box" for two equivalent π electrons one obtains:

                 ML

MS

2 1 0

1 |π1απ-1α|

0 |π1απ1β| |π1απ-1β|,

|π-1απ1β|

From this "box" one obtains six states:
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1∆ (ML=2); one state (MS=0),

1∆ (ML=-2); one state (MS=0),

1Σ (ML=0); one state (MS=0),

3Σ (ML=0); three states (MS=1,0, and -1).

d. It is not necessary to construct a "box" when coupling non-equivalent angular

momenta since vector coupling results in a range from the sum of the two individual

angular momenta to the absolute value of their difference.  In this case, 3d14d1, L=4, 3, 2,

1, 0, and S=1,0.  The term symbols are: 3G, 1G, 3F, 1F, 3D, 1D, 3P, 1P, 3S, and 1S.  The L

and S angular momenta can be vector coupled to produce further splitting into levels:

J = L + S ... |L - S|.

Denoting J as a term symbol subscript one can identify all the levels and subsequent (2J +

1) states:

3G5 (11 states),

3G4 (9 states),

3G3 (7 states),

1G4 (9 states),

3F4 (9 states),

3F3 (7 states),

3F2 (5 states),

1F3 (7 states),

3D3 (7 states),
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3D2 (5 states),

3D1 (3 states),

1D2 (5 states),

3P2 (5 states),

3P1 (3 states),

3P0 (1 state),

1P1 (3 states),

3S1 (3 states), and

1S0 (1 state).

e. Construction of a "box" for the two equivalent d electrons generates (note the

"box" has been turned side ways for convenience):

                         MS

ML

1 0

4 |d2αd2β|

3 |d2αd1α| |d2αd1β|, |d2βd1α|

2 |d2αd0α| |d2αd0β|, |d2βd0α|,

|d1αd1β|

1 |d1αd0α|, |d2αd-1α| |d1αd0β|, |d1βd0α|,

|d2αd-1β|, |d2βd-1α|
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0 |d2αd-2α|, |d1αd-1α| |d2αd-2β|, |d2βd-2α|,

|d1αd-1β|, |d1βd-1α|,

|d0αd0β|

The term symbols are: 1G, 3F, 1D, 3P, and 1S.  The L and S angular momenta can be

vector coupled to produce further splitting into levels:

1G4 (9 states),

3F4 (9 states),

3F3 (7 states),

3F2 (5 states),

1D2 (5 states),

3P2 (5 states),

3P1 (3 states),

3P0 (1 state), and

1S0 (1 state).

23.

a. Once the spatial symmetry has been determined by multiplication of the irreducible

representations, the spin coupling gives the result:

1

2( )|3a1α1b1β| - |3a1β1b1α|  

b. There are three states here :
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1.) |3a1α1b1α|,

2.) 
1

2( )|3a1α1b1β| + |3a1β1b1α|  , and

3.) |3a1β1b1β|

c. |3a1α3a1β|

24.

a. All the Slater determinants have in common the |1sα1sβ2sα2sβ| "core" and hence this

component will not be written out explicitly for each case.

3P(ML=1,MS=1) = |p1αp0α|

= |
1

2
(px + ipy) α(pz)α|

= 
1

2( )|pxαpzα| + i|pyαpzα|  

3P(ML=0,MS=1) = |p1αp-1α|

= |
1

2
(px + ipy) α

1

2
(px - ipy) α|

= 
1
2( )|pxαpxα| - i|pxαpyα| + i|pyαpxα| + |pyαpyα|  

= 
1
2( )0 - i|pxαpyα| - i|pxαpyα| + 0  

= 
1
2( )-2i|pxαpyα|  

= -i|pxαpyα|
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3P(ML=-1,MS=1) = |p-1αp0α|

= |
1

2
(px - ipy) α(pz)α|

= 
1

2( )|pxαpzα| - i|pyαpzα|  

As you can see, the symmetries of each of these states cannot be labeled with a single

irreducible representation of the C2v point group.  For example, |pxαpzα| is xz (B1) and

|pyαpzα| is yz (B2) and hence the 3P(ML=1,MS=1) state is a combination of B1 and B2

symmetries.  But, the three 3P(ML,MS=1) functions are degenerate for the C atom and

any combination of these three functions would also be degenerate.  Therefore, we can

choose new combinations that can be labeled with "pure" C2v point group labels.

3P(xz,MS=1) = |pxαpzα|

 = 
1

2( )
3P(ML=1,MS=1) + 3P(ML=-1,MS=1)   = 3B1

3P(yx,MS=1) = |pyαpxα|

  = 
1
i ( )

3P(ML=0,MS=1)   = 3A2

3P(yz,MS=1) = |pyαpzα|

  = 
1

i 2( )
3P(ML=1,MS=1) - 3P(ML=-1,MS=1)   = 3B2

Now, we can do likewise for the five degenerate 1D states:

1D(ML=2,MS=0) = |p1αp1β|

= |
1

2
(px + ipy) α

1

2
(px + ipy) β|
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= 
1
2( )|pxαpxβ| + i|pxαpyβ| + i|pyαpxβ| - |pyαpyβ|  

1D(ML=-2,MS=0) = |p-1αp-1β|

= |
1

2
(px - ipy) α

1

2
(px - ipy) β|

= 
1
2( )|pxαpxβ| - i|pxαpyβ| - i|pyαpxβ| - |pyαpyβ|  

1D(ML=1,MS=0) = 
1

2( )|p0αp1β| - |p0βp1α|  

= 
1

2





|(pz)α
1

2
(px + ipy)β| - |(pz)β

1

2
(px + ipy)α|  

= 
1
2( )|pzαpxβ| + i|pzαpyβ| - |pzβpxα| - i|pzβpyα|  

1D(ML=-1,MS=0) = 
1

2( )|p0αp-1β| - |p0βp-1α|  

= 
1

2





|(pz)α
1

2
(px - ipy)β| - |(pz)β

1

2
(px - ipy)α|  

= 
1
2( )|pzαpxβ| - i|pzαpyβ| - |pzβpxα| + i|pzβpyα|  

1D(ML=0,MS=0) = 
1

6( )2|p0αp0β| + |p1αp-1β| + |p-1αp1β|  

= 
1

6
(2|pzαpzβ| + |

1

2
(px + ipy)α

1

2
(px - ipy)β| 

 + |
1

2
(px - ipy) α

1

2
(px + ipy) β|)

= 
1

6
(2|pzαpzβ| 
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 + 
1
2( )|pxαpxβ| - i|pxαpyβ| + i|pyαpxβ| + |pyαpyβ|  

 + 
1
2( )|pxαpxβ| + i|pxαpyβ| - i|pyαpxβ| + |pyαpyβ|  )

= 
1

6( )2|pzαpzβ| + |pxαpxβ| + |pyαpyβ|  )

Analogous to the three 3P states, we can also choose combinations of the five degenerate

1D states which can be labeled with "pure" C2v point group labels:

1D(xx-yy,MS=0) = |pxαpxβ| - |pyαpyβ|

 = ( )
1D(ML=2,MS=0) + 1D(ML=-2,MS=0)   = 1A1

1D(yx,MS=0) = |pxαpyβ| + |pyαpxβ|

 = 
1
i ( )

1D(ML=2,MS=0) - 1D(ML=-2,MS=0)   = 1A2

1D(zx,MS=0) = |pzαpxβ| - |pzβpxα|

  = ( )
1D(ML=1,MS=0) + 1D(ML=-1,MS=0)   = 1B1

1D(zy,MS=0) = |pzαpyβ| - |pzβpyα|

  = 
1
i ( )

1D(ML=1,MS=0) - 1D(ML=-1,MS=0)   = 1B2

1D(2zz+xx+yy,MS=0) = 
1

6( )2|pzαpzβ| + |pxαpxβ| + |pyαpyβ|  )

  = 1D(ML=0,MS=0) = 1A1

The only state left is the 1S:

1S(ML=0,MS=0) = 
1

3( )|p0αp0β| - |p1αp-1β| - |p-1αp1β|  
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= 
1

3
(|pzαpzβ| - |

1

2
(px + ipy)α

1

2
(px - ipy)β| 

 - |
1

2
(px - ipy) α

1

2
(px + ipy) β|)

= 
1

3
(|pzαpzβ| 

 - 
1
2( )|pxαpxβ| - i|pxαpyβ| + i|pyαpxβ| + |pyαpyβ|  

 - 
1
2( )|pxαpxβ| + i|pxαpyβ| - i|pyαpxβ| + |pyαpyβ|  )

= 
1

3( )|pzαpzβ| - |pxαpxβ| - |pyαpyβ|  )

Each of the components of this state are A1 and hence this state has

A1 symmetry.

b. Forming symmetry-adapted AOs from the C and H atomic orbitals would

generate the following:
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H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

H1s + H1s = σg = a1 H1s - H1s = σu = b2

C2s = a1 C2p = a1 C2p = b2 C2p = b1
z xy

The bonding, nonbonding, and antibonding orbitals of CH2 can be illustrated in the

following manner:

H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

σ = a1 σ = b2 n = a1 pπ = b1

σ* = a1 σ* = b2

c.
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Orbital-correlation diagram for the reaction C + H2  -----> CH2 (bent)

a1(bonding)

b2(antibonding)
a1(antibonding)

b1(2pπ)

a1(non-bonding)

b2(bonding)

CH2 (bent)C + H2

σg(a1)

2s(a1)

σu(b2)

2px(b1)     2py(b2)     2pz(a1)

d. - e. It is necessary to determine how the wavefunctions found in part a.

correlate with states of the CH2 molecule:

3P(xz,MS=1); 3B1 = σg2s2pxpz → σ2n2pπσ*

3P(yx,MS=1); 3A2 = σg2s2pxpy → σ2n2pπσ

3P(yz,MS=1); 3B2 = σg2s2pypz → σ2n2σσ*

1D(xx-yy,MS=0); 1A1 → σ2n2pπ2 - σ2n2σ2

1D(yx,MS=0); 1A2 → σ2n2σpπ

1D(zx,MS=0); 1B1 → σ2n2σ*pπ

1D(zy,MS=0); 1B2 → σ2n2σ*σ

1D(2zz+xx+yy,MS=0); 1A1 → 2σ2n2σ*2 + σ2n2pπ2 + σ2n2σ2

Note, the C + H2 state to which the lowest 1A1 (σ2n2σ2) CH2 state decomposes would be

σg2s2py2.  This state (σg2s2py2) cannot be obtained by a simple combination of the 1D

states.  In order to obtain pure σg2s2py2 it is necessary to combine 1S with 1D.  For

example,
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σg2s2py2 = 
1
6( )6 1D(0,0) - 2 3 1S(0,0)   - 

1
2( )1D(2,0) + 1D(-2,0)  .

This indicates that a configuration correlation diagram must be drawn with a barrier near

the 1D asymptote to represent the fact that 1A1 CH2 correlates with a mixture of 1D and

1S carbon plus hydrogen.  The C + H2 state to which the lowest 3B1 (σ2nσ2pπ) CH2 state

decomposes would be σg2spy2px.
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(3B1
3B2

3A2)

(1B2
1A1

1A1
1A2

1B1)

C(1D) + H2

   29.2 Kcal/mole

1A1(σ2σ2n2)

3B1(σ2σ2npπ)

3A2(σ2σn2pπ)

3B2(σ2σn2σ∗)

3B1(σ2n2σ∗pπ)
3B1

C(3P) + H2

σg
2spy

2px

3B1
3B1

3B2

3A2

1A1

78.8 Kcal/mole

97.0 Kcal/mole

f. If you follow the 3B1 component of the C(3P) + H2 (since it leads to the

ground-state products) to 3B1 CH2 you must go over an approximately 20 Kcal/mole

barrier.  Of course this path produces 3B1 CH2 product.  Distortions away from C2v

symmetry, for example to Cs symmetry, would make the a1 and b2 orbitals identical in
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symmetry (a').  The b1 orbitals would maintain their different symmetry going to a''

symmetry.  Thus 3B1 and 3A2 (both 3A'' in Cs symmetry and odd under reflection

through the molecular plane) can mix.  The system could thus follow the 3A2 component

of the C(3P) + H2 surface to the place (marked with a circle on the CCD) where it crosses

the 3B1 surface upon which it then moves and continues to products.  As a result, the

barrier would be lowered.

You can estimate when the barrier occurs (late or early) using thermodynamic

information for the reaction (i.e. slopes and asymptotic energies).  For example, an early

barrier would be obtained for a reaction with the characteristics:

Progress of Reaction

Energy

and a late barrier would be obtained for a reaction with the characteristics:
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Progress of Reaction

Energy

This relation between reaction endothermicity or exothermicity and the character of the

transition state is known as the Hammond postulate.  Note that the C(3P1) + H2 --> CH2

reaction of interest here has an early barrier.

g. The reaction C(1D) + H2 ---> CH2 (1A1) should have no symmetry barrier (this

can be recognized by following the 1A1 (C(1D) + H2) reactants down to the 1A1 (CH2)

products).

25.

This problem in many respects is analogous to problem 24.

The 3B1 surface certainly requires a two configuration CI wavefunction; the σ2σ2npx

(π2py2spx) and the σ2n2pxσ* (π2s2pxpz).  The 1A1 surface could use the σ2σ2n2

(π2s2py2) only but once again there is no combination of 1D determinants which gives

purely this configuration (π2s2py2).  Thus mixing of both 1D and 1S determinants are
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necessary to yield the required π2s2py2 configuration.  Hence even the 1A1 surface would

require a multiconfigurational wavefunction for adequate description.

C:

H

H

H

C

C

H

x

z

y
+      C

n

σ∗CC

σCC

σ∗CC

σCC

2px(b1)     2py(b2)     2pz(a1)

π*(b2)

2s(a1)

π(a1)

C2H2 + C C3H2 

b2(bonding)

a1(non-bonding)

b1(2pπ)

a1(antibonding)
b2(antibonding)

a1(bonding)

Orbital-correlation diagram for the reaction C2H2 + C -----> C3H2 

Configuration correlation diagram for the reaction C2H2 + C ---> C3H2.
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Ea 
3B1

∆E 3B1

Ea > ∆E  (for 3B1)

Ea = ∆E  (for 1A1)

π2s2pypz
3B2

π2s2pxpy
3A2

π2s2pxpz
3B1

π2s2py
2  1A1

C(1D) + C2H2

1A1(σ2σ2n2)

3B1(σ2σ2npπ)

3A2(σ2σn2pπ)

3B2(σ2σn2σ∗)

3B1(σ2n2σ∗pπ)3B1

C(3P) + C2H2

π2spy
2px

26.

a. CCl4 is tetrahedral and therefore is a spherical top.  CHCl3 has C3v symmetry and

therefore is a symmetric top.  CH2Cl2 has C2v symmetry and therefore is an asymmetric

top.

b. CCl4 has such high symmetry that it will not exhibit pure rotational spectra

because it has no permanent dipole moment. CHCl3 and CH2Cl2 will both exhibit pure

rotation spectra.
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27.

NH3 is a symmetric top (oblate).  Use the given energy expression,

E = (A - B) K2 + B J(J + 1),

A = 6.20 cm-1, B = 9.44 cm-1, selection rules ∆J = ±1, and the fact that µ0
→  lies along the

figure axis such that ∆K = 0, to give:

∆E = 2B (J + 1) = 2B, 4B, and 6B (J = 0, 1, and 2).

So, lines are at 18.88 cm-1, 37.76 cm-1, and 56.64 cm-1.

28.

To convert between cm-1 and energy, multiply by hc = (6.62618x10-34J

sec)(2.997925x1010cm sec-1) = 1.9865x1023 J cm.

Let all quantities in cm-1 be designated with a bar,

e.g. Be


  = 1.78 cm-1.

a. hcBe


  = 
h
_2

2µRe2  

Re = 
h
_

2µhcBe


  , 

µ = 
mBmO

mB + mO
  = 

(11)(16)
(11 + 16)  x 1.66056x10-27 kg

   = 1.0824x10-26 kg.
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hcBe


  = hc(1.78 cm-1) = 3.5359x10-23 J

Re = 
1.05459x10-34 J sec

(2)1.0824x10-26 kg.3.5359x10-23 J
  

Re = 1.205x10-10 m = 1.205 Å

De = 
4Be3

h
_ωe2

  , De


  = 
4Be

3

ωe
 2

   = 
(4)(1.78 cm-1)3

(1885 cm-1)2   = 6.35x10-6 cm-1

ωexe = 
h
_ωe2

4D0
e

  , ωexe


  = 
ωe
 2

4D0
e

   = 
(1885 cm-1)2

(4)(66782.2 cm-1)  = 13.30 cm-1.

D0
0  = D0

e  - 
h
_ωe
2   + 

h
_ωexe

4   , D0
0


  = D0

e


  - 
ωe


2   + 
ωexe



4  

   = 66782.2 - 
1885

2   + 
13.3

4  

   = 65843.0 cm-1 = 8.16 eV.

αe = 
-6Be2

h
_ωe

  + 
6 Be3h

_ωexe

h
_ωe

 

αe


  = 
-6Be

2

ωe
   + 

6 Be
3ωexe



ωe
  

αe


  = 
(-6)(1.78)2

(1885)   + 
6 (1.78)3(13.3)

(1885)   = 0.0175 cm-1.

B0 = Be - αe(1/2) , B0


  = Be


  - αe


(1/2)  = 1.78 - 0.0175/2

  = 1.77 cm-1

B1 = Be - αe(3/2) , B1


  = Be


  - αe


(3/2)  = 1.78 - 0.0175(1.5)

  = 1.75 cm-1
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b. The molecule has a dipole moment and so it should have a pure rotational

spectrum.  In addition, the dipole moment should change with R and so it should have a

vibration-rotation spectrum.

The first three lines correspond to J = 1 → 0, J = 2 → 1, J = 3 → 2

E = h
_
 ωe(v + 1/2) - h

_
 ωexe(v + 1/2)2 + BvJ(J + 1) - DeJ2(J + 1)2

∆E = h
_
 ωe - 2h

_
 ωexe - B0J(J + 1) + B1J(J - 1) - 4DeJ3

∆E


  = ωe


  - 2ωexe


  - B0


 J(J + 1) + B1


 J(J - 1) - 4De


 J3

∆E


  = 1885 - 2(13.3) - 1.77J(J + 1) + 1.75J(J - 1) - 4(6.35x10-6)J3

     = 1858.4 - 1.77J(J + 1) + 1.75J(J - 1) - 2.54x10-5J3

∆E


(J = 1)   = 1854.9 cm-1

∆E


(J = 2)   = 1851.3 cm-1

∆E


(J = 3)   = 1847.7 cm-1

29.

The C2H2Cl2 molecule has a σh plane of symmetry (plane of molecule), a C2 axis (⊥ to

the molecular plane), and inversion symmetry, this results in C2h symmetry.  Using C2h

symmetry, the modes can be labeled as follows: ν1, ν2, ν3, ν4, and ν5 are ag, ν6 and ν7

are au, ν8 is bg, and ν9, ν10, ν11, and ν12 are bu.
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30.

R

θ HH

y

z

C

Molecule I Molecule II

RCH = 1.121 Å RCH = 1.076 Å

∠HCH = 104° ∠HCH = 136°

yH = R Sin (θ/2) = ±0.8834 yH = ±0.9976

zH = R Cos (θ/2) = -0.6902 zH = -0.4031

Center of Mass(COM):

clearly, X = Y = 0,

Z = 
12(0) - 2RCos(θ/2)

14   = -0.0986 Z = -0.0576

a. Ixx = ∑
j

mj(yj2 + zj2)  - M(Y2 + Z2)

Ixy = -∑
j

mjxjyj  - MXY

Ixx = 2(1.121)2 - 14(-0.0986)2 Ixx = 2(1.076)2 - 14(-0.0576)2

      = 2.377       = 2.269
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Iyy = 2(0.6902)2 - 14(-0.0986)2 Iyy = 2(0.4031)2 - 14(-0.0576)2

      = 0.8167       = 0.2786

Izz = 2(0.8834)2 Izz = 2(0.9976)2

     = 1.561      = 1.990

Ixz = Iyz = Ixy = 0

b. Since the moment of inertia tensor is already diagonal, the principal moments

of inertia have already been determined to be

(Ia < Ib < Ic):

Iyy < Izz < Ixx Iyy < Izz < Ixx

0.8167 < 1.561 < 2.377 0.2786 < 1.990 < 2.269

Using the formula: A = 
h

8π2cIa
  = 

6.626x10-27

8π2(3x1010)Ia
  X 

6.02x1023

(1x10-8)2  

   A = 
16.84

Ia
  cm-1

similarly, B = 
16.84

Ib
  cm-1, and C = 

16.84
Ic

  cm-1.

So,

Molecule I Molecule II

y ⇒ A = 20.62 y ⇒ A = 60.45

z ⇒ B = 10.79 z ⇒ B = 8.46

x ⇒ C = 7.08 x ⇒ C = 7.42

c. Averaging B + C:

B = (B + C)/2 = 8.94 B = (B + C)/2 = 7.94

A - B = 11.68 A - B = 52.51
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Using the prolate top formula:

E = (A - B) K2 + B J(J + 1),

Molecule I Molecule II

E = 11.68K2 + 8.94J(J + 1) E = 52.51K2 + 7.94J(J + 1)

Levels: J = 0,1,2,... and K = 0,1, ... J

For a given level defined by J and K, there are MJ degeneracies given by: (2J + 1) x









2 for K ≠ 0

1 for K = 0
 

d.

Molecule I Molecule II

HH

C

z => Ib

y => Ia

HH

y => Ia

z => Ib

C

e.  Assume molecule I is CH2
- and molecule II is CH2.  Then,

∆E = EJj
(CH2) - EJi

(CH2
-), where:

E(CH2) = 52.51K2 + 7.94J(J + 1), and E(CH2
-) = 11.68K2 + 8.94J(J + 1)

For R-branches: Jj = Ji + 1, ∆K = 0:

∆ER = EJj
(CH2) - EJi

(CH2
-)
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= 7.94(Ji + 1)(Ji + 1 + 1) - 8.94Ji(Ji + 1)

= (Ji + 1){7.94(Ji + 1 + 1) - 8.94Ji}

= (Ji + 1){(7.94- 8.94)Ji + 2(7.94)}

= (Ji + 1){-Ji + 15.88}

For P-branches: Jj = Ji - 1, ∆K = 0:

∆EP = EJj
(CH2) - EJi

(CH2
-)

= 7.94(Ji - 1)(Ji - 1 + 1) - 8.94Ji(Ji + 1)

= Ji{7.94(Ji - 1) - 8.94(Ji + 1)}

= Ji{(7.94- 8.94)Ji - 7.94 - 8.94}

= Ji{-Ji - 16.88}

This indicates that the R branch lines occur at energies which grow closer and closer

together as J increases (since the 15.88 - Ji term will cancel).  The P branch lines occur at

energies which lie more and more negative (i.e. to the left of the origin).  So, you can

predict that if molecule I is CH2
- and molecule II is CH2 then the R-branch has a band

head and the P-branch does not.  This is observed, therefore our assumption was correct:

molecule I is CH2
- and molecule II is CH2.

f. The band head occurs when 
d(∆ER)

dJ   = 0.

d(∆ER)
dJ   = 

d
dJ [(Ji + 1){-Ji + 15.88}] = 0

  = 
d
dJ(-Ji2 - Ji + 15.88Ji + 15.88)  = 0

  = -2Ji + 14.88 = 0
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∴ Ji = 7.44,  so J = 7 or 8.

At J = 7.44:

∆ER = (J + 1){-J + 15.88}

∆ER = (7.44 + 1){-7.44 + 15.88} = (8.44)(8.44) = 71.2 cm-1 above 

the origin.

31.

a.

D6h  E 2C6 2C3 C2 3C2

'

3C2

"

 i 2S3 2S6 σh 3σd 3σv

A1g  1  1  1  1  1  1  1  1  1  1  1  1 x2+y2,z2

A2g  1  1  1  1 -1 -1  1  1  1  1 -1 -1 Rz

B1g  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1

B2g  1 -1  1 -1 -1  1  1 -1  1 -1 -1  1

E1g  2  1 -1 -2  0  0  2  1 -1 -2  0  0 Rx,Ry (xz,yz)

E2g  2 -1 -1  2  0  0  2 -1 -1  2  0  0 (x2-y2,xy)

A1u  1  1  1  1  1  1 -1 -1 -1 -1 -1 -1
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A2u  1  1  1  1 -1 -1 -1 -1 -1 -1  1  1 z

B1u  1 -1  1 -1  1 -1 -1  1 -1  1 -1  1

B2u  1 -1  1 -1 -1  1 -1  1 -1  1  1 -1

E1u  2  1 -1 -2  0  0 -2 -1  1  2  0  0 (x,y)

E2u  2 -1 -1  2  0  0 -2  1  1 -2  0  0

ΓC-H 6 0 0 0 0 2 0 0 0 6 2 0

b. The number of irreducible representations may be found by using the following

formula:

nirrep = 
1
g∑

R
χred(R)χirrep(R) ,

where g = the order of the point group (24 for D6h).

nA1g = 
1
24∑

R
ΓC-H(R).A1g(R) 

= 
1
24 {(1)(6)(1)+(2)(0)(1)+(2)(0)(1)+(1)(0)(1)

       +(3)(0)(1)+(3)(2)(1)+(1)(0)(1)+(2)(0)(1)

       +(2)(0)(1)+(1)(6)(1)+(3)(2)(1)+(3)(0)(1)}

= 1

nA2g = 
1
24 {(1)(6)(1)+(2)(0)(1)+(2)(0)(1)+(1)(0)(1)

      +(3)(0)(-1)+(3)(2)(-1)+(1)(0)(1)+(2)(0)(1)

      +(2)(0)(1)+(1)(6)(1)+(3)(2)(-1)+(3)(0)(-1)}
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= 0

nB1g = 
1
24 {(1)(6)(1)+(2)(0)(-1)+(2)(0)(1)+(1)(0)(-1)

      +(3)(0)(1)+(3)(2)(-1)+(1)(0)(1)+(2)(0)(-1)

      +(2)(0)(1)+(1)(6)(-1)+(3)(2)(1)+(3)(0)(-1)}

= 0

nB2g = 
1
24 {(1)(6)(1)+(2)(0)(-1)+(2)(0)(1)+(1)(0)(-1)

      +(3)(0)(-1)+(3)(2)(1)+(1)(0)(1)+(2)(0)(-1)

      +(2)(0)(1)+(1)(6)(-1)+(3)(2)(-1)+(3)(0)(1)}

= 0

nE1g = 
1
24 {(1)(6)(2)+(2)(0)(1)+(2)(0)(-1)+(1)(0)(-2)

      +(3)(0)(0)+(3)(2)(0)+(1)(0)(2)+(2)(0)(1)

      +(2)(0)(-1)+(1)(6)(-2)+(3)(2)(0)+(3)(0)(0)}

= 0

nE2g = 
1
24 {(1)(6)(2)+(2)(0)(-1)+(2)(0)(-1)+(1)(0)(2)

      +(3)(0)(0)+(3)(2)(0)+(1)(0)(2)+(2)(0)(-1)

      +(2)(0)(-1)+(1)(6)(2)+(3)(2)(0)+(3)(0)(0)}

= 1

nA1u = 
1
24 {(1)(6)(1)+(2)(0)(1)+(2)(0)(1)+(1)(0)(1)

      +(3)(0)(1)+(3)(2)(1)+(1)(0)(-1)+(2)(0)(-1)

      +(2)(0)(-1)+(1)(6)(-1)+(3)(2)(-1)+(3)(0)(-1)}

= 0
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nA2u = 
1
24 {(1)(6)(1)+(2)(0)(1)+(2)(0)(1)+(1)(0)(1)

      +(3)(0)(-1)+(3)(2)(-1)+(1)(0)(-1)+(2)(0)(-1)

      +(2)(0)(-1)+(1)(6)(-1)+(3)(2)(1)+(3)(0)(1)}

= 0

nB1u = 
1
24 {(1)(6)(1)+(2)(0)(-1)+(2)(0)(1)+(1)(0)(-1)

      +(3)(0)(1)+(3)(2)(-1)+(1)(0)(-1)+(2)(0)(1)

      +(2)(0)(-1)+(1)(6)(1)+(3)(2)(-1)+(3)(0)(1)}

= 0

nB2u = 
1
24 {(1)(6)(1)+(2)(0)(-1)+(2)(0)(1)+(1)(0)(-1)

      +(3)(0)(-1)+(3)(2)(1)+(1)(0)(-1)+(2)(0)(1)

      +(2)(0)(-1)+(1)(6)(1)+(3)(2)(1)+(3)(0)(-1)}

= 1

nE1u = 
1
24 {(1)(6)(2)+(2)(0)(1)+(2)(0)(-1)+(1)(0)(-2)

      +(3)(0)(0)+(3)(2)(0)+(1)(0)(-2)+(2)(0)(-1)

      +(2)(0)(1)+(1)(6)(2)+(3)(2)(0)+(3)(0)(0)}

= 1

nE2u = 
1
24 {(1)(6)(2)+(2)(0)(-1)+(2)(0)(-1)+(1)(0)(2)

      +(3)(0)(0)+(3)(2)(0)+(1)(0)(-2)+(2)(0)(1)

      +(2)(0)(1)+(1)(6)(-2)+(3)(2)(0)+(3)(0)(0)}

= 0

We see that ΓC-H = A1g⊕E2g⊕B2u⊕E1u
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c. x and y ⇒ E1u , z ⇒ A2u , so, the ground state A1g level can be excited to the

degenerate E1u level by coupling through the x or y transition dipoles.  Therefore E1u is

infrared active and ⊥ polarized.

d. (x2 + y2, z2) ⇒ A1g, (xz, yz) ⇒ E1g, (x2 - y2, xy) ⇒ E2g ,so, the ground state

A1g level can be excited to the degenerate E2g level by coupling through the x2 - y2 or xy

transitions or be excited to the degenerate A1g level by coupling through the xz or yz

transitions.  Therefore A1g and E2g are Raman active..

e. The B2u mode is not IR or Raman active.

32.

a. Evaluate the z-component of µfi:

µfi = <2pz|e r Cosθ|1s>, where ψ1s = 
1
π 



Z

a0

3
2  e 

-Zr
a0   , and ψ2pz =

1

4 2π
 



Z

a0

5
2  r Cosθ e 

-Zr
2a0  .

µfi = 
1

4 2π
 



Z

a0

5
2 

1
π 



Z

a0

3
2 <r Cosθ e 

-Zr
2a0 |e r Cosθ|e 

-Zr
a0  >

    = 
1

4π 2
 



Z

a0

4
  <r Cosθ e 

-Zr
2a0 |e r Cosθ|e 

-Zr
a0  >



81

    = 
e

4π 2
 



Z

a0

4
 ⌡⌠
0

∞
r2dr⌡⌠

0

π
Sinθdθ ⌡⌠

0

2π
dϕ








r2 e 

-Zr
2a0 e 

-Zr
a0   Cos2θ

    = 
e

4π 2
  2π 



Z

a0

4
 ⌡

⌠

0

∞









r4 e 

-3Zr
2a0 dr ⌡⌠

0

π
SinθCos2θdθ 

    = 
e

4π 2
  2π 



Z

a0

4
 

4!





3Z

2a0

5 



-1

3   Cos3θ


π

0
 

    = 
e

4π 2
  2π 



Z

a0

4
 
25a054!

35Z5  



-1

3  ( )(-1)3 - (1)3  

    = 
e

2
 
28a0

35Z  = 
ea0
Z  

28

235   = 0.7449 
ea0
Z  

b. Examine the symmetry of the integrands for <2pz| e x |1s> and <2pz| e y |1s>.

Consider reflection in the xy plane:

Function Symmetry

2pz -1

x +1
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1s +1

y +1

Under this operation, the integrand of <2pz| e x |1s> is (-1)(1)(1) = -1 (it is

antisymmetric) and hence <2pz| e x |1s> = 0.

Similarly, under this operation the integrand of <2pz| e y |1s> is

(-1)(1)(1) = -1 (it is also antisymmetric) and hence <2pz| e y |1s> = 0.

c. τR = 
3h-4c3

4(Ei - Ef)3|µfi|2
  ,

Ei = E2pz = -
1
4  Z2 






e2

2a0
 

Ef = E1s = -Z2 





e2

2a0
 

Ei - Ef = 
3
8 






e2

a0
  Z2

Making the substitutions for Ei - Ef and |µfi| in the expression for τR we obtain:

τR = 
3h-4c3

4





3

8 





e2

a0
 Z2

3
 











ea0

Z  
28

235

2
  ,

    = 
3h-4c3

4 
33
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e6

a03  Z6 





e2a02

Z2  
216

(2)310 

 ,

    = 
h-4c3 38 a0

 e8 Z4 28  ,
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Inserting e2 = 
h-2

mea0
  we obtain:

τR = 
h-4c3 38 a0 me4a04

 h-8 Z4 28   = 
38

28 
c3 a05 me4

 h-4 Z4   

    = 25.6289 
c3 a05 me4

 h-4 Z4   

     = 25,6289 



1

Z4   x

(2.998x1010 cm sec-1)3(0.529177x10-8 cm)5(9.109x10-28 g)4

(1.0546x10-27 g cm2 sec-1)4  

      = 1.595x10-9 sec x 



1

Z4  

So, for example:

Atom τR

H 1.595 ns

He+ 99.7 ps

Li+2 19.7 ps

Be+3 6.23 ps

Ne+9 159 fs

33.
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a. H = H0 + λH'(t), H'(t) = Vθ(t), H0ϕk = Ekϕk, ωk = Ek/h- 

ih-
∂ψ
∂t   = Hψ

let ψ(r,t) = ih-∑
j

cj(t)ϕje
-iωjt  and insert into the Schrödinger equation:

ih-∑
j

  c⋅ j - iωjcj   e-iωjtϕj = ih-∑
j

cj(t)e
-iωjt(H0 + λH'(t)) ϕj

∑
j

  ih-c⋅ j + Ejcj - cjEj - cjλH'   e-iωjtϕj = 0

∑
j

  ih-c⋅ j<m|j> - cjλ<m|H'|j>   e-iωjt = 0

ih-c⋅  m e-iωmt = ∑
j

cjλH'mj  e
-iωjt

So,

c⋅  m = 
1

ih-∑
j

cjλH'mj  e
-i(ωjm)t

Going back a few equations and multiplying from the left by ϕk instead of ϕm we obtain:

∑
j

  ih-c⋅ j<k|j> - cjλ<k|H'|j>   e-iωjt = 0

ih-c⋅  k e-iωkt = ∑
j

cjλH'kj  e
-iωjt

So,
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c⋅  k = 
1

ih-∑
j

cjλH'kj  e
-i(ωjk)t

Now, let:

cm = cm(0) + cm(1)λ + cm(2)λ2 + ...

ck = ck(0) + ck(1)λ + ck(2)λ2 + ...

and substituting into above we obtain:

c⋅  m(0) + c⋅  m(1)λ + c⋅  m(2)λ2 + ... = 
1

ih-∑
j

[cj(0) + cj(1)λ + cj(2)λ2 + ...] λH'mj e
-i(ωjm)t

first order:

c⋅  m(0) = 0 ⇒ cm(0) = 1

second order:

c⋅  m(1) = 
1

ih-∑
j

cj(0) H'mj e
-i(ωjm)t 

(n+1)st order:

c⋅  m(n) = 
1

ih-∑
j

cj(n-1) H'mj e
-i(ωjm)t 

Similarly:

first order:

c⋅  k(0) = 0 ⇒ ck≠m(0) = 0

second order:

c⋅  k(1) = 
1

ih-∑
j

cj(0) H'kj e
-i(ωjk)t 
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(n+1)st order:

c⋅  k(n) = 
1

ih-∑
j

cj(n-1) H'kj e
-i(ωjk)t 

So,

c⋅  m(1) = 
1

ih-
  cm(0) H'mm e-i(ωmm)t = 

1

ih-
  H'mm

cm(1)(t) = 
1

ih-
 ⌡⌠
0

t
dt' Vmm  = 

Vmmt

ih-
 

and similarly,

c⋅  k(1) = 
1

ih-
  cm(0) H'km e-i(ωmk)t = 

1

ih-
  H'km e-i(ωmk)t

ck(1)(t) = 
1

ih-
  Vkm 

⌡⌠
0

t

dt' e-i(ωmk)t'  = 
Vkm

h-ωmk
[ ]e-i(ωmk)t - 1  

c⋅  m(2) = 
1

ih-∑
j

cj(1) H'mj e
-i(ωjm)t 

c⋅  m(2) = ∑
j≠m

 
1

ih-
 
Vjm

h-ωmj
[ ]e-i(ωmj)t - 1  H'mj e

-i(ωjm)t + 
1

ih-
 
Vmmt

ih-
  H'mm

cm(2) = ∑
j≠m

 
1

ih-
 
VjmVmj

h-ωmj
 ⌡⌠
0

t
dt' e-i(ωjm)t' [ ]e-i(ωmj)t' - 1   - 

VmmVmm

h-2  ⌡⌠
0

t
t'dt' 

= ∑
j≠m

 
VjmVmj

ih-2ωmj
 ⌡⌠
0

t
dt'[ ]1 - e-i(ωjm)t'   - 

|Vmm|2

h-2  
t2
2 
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= ∑
j≠m

 
VjmVmj

ih-2ωmj
 







t - 
e-i(ωjm)t - 1

-iωjm
  - 

|Vmm|2

h-2  
t2
2 

= ∑
j≠m

'
VjmVmj

h-2ωmj2
 ( )e-i(ωjm)t - 1   + ∑

j≠m
' 
VjmVmj

ih-2ωmj
  t - 

|Vmm|2 t2

2h-2  

Similarly,

c⋅  k(2) = 
1

ih-∑
j

cj(1) H'kj e
-i(ωjk)t 

= ∑
j≠m

 
1

ih-
 
Vjm

h-ωmj
[ ]e-i(ωmj)t - 1  H'kj e

-i(ωjk)t +

 
1

ih-
 
Vmmt

ih-
  H'km e

-i(ωmk)t

ck(2)(t) = ∑
j≠m

' 
VjmVkj

ih-2ωmj
 ⌡⌠
0

t
dt' e-i(ωjk)t' [ ]e-i(ωmj)t' - 1  

 - 
VmmVkm

h-2  ⌡⌠
0

t
t'dt' e-i(ωmk)t'

= ∑
j≠m

'
VjmVkj

ih-2ωmj
 





e-i(ωmj+ωjm)t - 1

-iωmk
 - 

e-i(ωjk)t - 1
-iωjk

  

- 
VmmVkm

h-2  







e-i(ωmk)t'






t'

-iωmk
 - 

1
-(iωmk)2

t

0
 

= ∑
j≠m

'
VjmVkj

h-2ωmj
 





e-i(ωmk)t - 1

ωmk  - 
e-i(ωjk)t - 1

ωjk   
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+ 
VmmVkm

h-2ωmk
 





e-i(ωmk)t'



t'

i  - 
1

ωmk

t

0
 

= ∑
j≠m

'
VjmVkj
Em - Ej

 





e-i(ωmk)t - 1

Em - Ek
 - 

e-i(ωjk)t - 1
Ej - Ek

  

+ 
VmmVkm

h-(Em - Ek)
 





e-i(ωmk)t



t

i - 
1

ωmk  + 
1

ωmk  

So, the overall amplitudes cm, and ck, to second order are:

cm(t) = 1 + 
Vmmt

ih-
  + ∑

j≠m
' 

VjmVmj

ih-(Em - Ej)
  t +

 ∑
j≠m

'
VjmVmj

h-2(Em - Ej)2 ( )e-i(ωjm)t - 1   - 
|Vmm|2 t2

2h-2  

ck(t) = 
Vkm

(Em - Ek)[ ]e-i(ωmk)t - 1   +

 
VmmVkm

(Em - Ek)2 [ ]1 - e-i(ωmk)t   + 
VmmVkm
(Em - Ek) 

t

h-i
  e-i(ωmk)t +

 ∑
j≠m

'
VjmVkj
Em - Ej

 





e-i(ωmk)t - 1

Em - Ek
 - 

e-i(ωjk)t - 1
Ej - Ek

  

b. The perturbation equations still hold:

c⋅  m(n) = 
1

ih-∑
j

cj(n-1) H'mj e
-i(ωjm)t  ; c⋅  k(n) = 

1

ih-∑
j

cj(n-1) H'kj e
-i(ωjk)t 

So, cm(0) = 1 and ck(0) = 0

c⋅  m(1) = 
1

ih-
  H'mm
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cm(1) = 
1

ih-
  Vmm ⌡⌠

-∞

t

dt' eηt  = 
Vmmeηt

ih-η
 

c⋅  k(1) = 
1

ih-
  H'km e-i(ωmk)t

ck(1) = 
1

ih-
  Vkm 

⌡⌠
-∞

t

dt' e-i(ωmk+η)t'  = 
Vkm

ih-(-iωmk+η)[ ]e-i(ωmk+η)t  

= 
Vkm

Em - Ek + ih-η[ ]e-i(ωmk+η)t  

c⋅  m(2) = ∑
j≠m

'
1

ih-
 

Vjm

Em - Ej + ih-η
 e-i(ωmj+η)t Vmj eηt e-i(ωjm)t +

1

ih-
 
Vmm eηt 

ih-η
  Vmm eηt

cm(2) = ∑
j≠m

'
1

ih-
 

VjmVmj

Em - Ej + ih-η
 ⌡⌠
-∞

t

e2ηt'dt'   - 
|Vmm|2 

h-2η
 ⌡⌠
-∞

t

e2ηt'dt'  

 = ∑
j≠m

'
VjmVmj

ih-2η(Em - Ej + ih-η)
  e2ηt - 

|Vmm|2 

2h-2η2   e2ηt

c⋅  k(2) = ∑
j≠m

'
1

ih-
 

Vjm

Em - Ej + ih-η
  e-i(ωmj+η)t H'kj e

-i(ωjk)t +

 
1

ih-
 
Vmm eηt

ih-η
  H'km e

-i(ωmk)t

ck(2) = ∑
j≠m

'
1

ih-
 

VjmVkj

Em - Ej + ih-η
 ⌡⌠
-∞

t

e-i(ωmk+2η)t'dt'  -
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VmmVkm

h-2η
 ⌡⌠
-∞

t

e-i(ωmk+2η)t'dt' 

= ∑
j≠m

'
VjmVkj e

-i(ωmk+2η)t

(Em - Ej + ih-η)(Em - Ek + 2ih-η)
  - 

VmmVkm e
-i(ωmk+2η)t

ih-η(Em - Ek + 2ih-η)
 

Therefore, to second order:

cm(t) = 1 + 
Vmmeηt

ih-η
  +  ∑

j
 

VjmVmj

ih-2η(Em - Ej + ih-η)
  e2ηt

ck(t) = 
Vkm

ih-(-iωmk+η)[ ]e-i(ωmk+η)t  

 +  ∑
j

 
VjmVkj e

-i(ωmk+2η)t

(Em - Ej + ih-η)(Em - Ek + 2ih-η)
 

c. In part a. the c(2)(t) grow linearly with time (for Vmm = 0) while in part b. they

remain finite for η > 0.  The result in part a. is due to the sudden turning on of the field.

d. |ck(t)|2 = 










∑
j

 
VjmVkj e

-i(ωmk+2η)t

(Em - Ej + ih-η)(Em - Ek + 2ih-η)

2
 

 = ∑
jj'

 
VkjVkj'VjmVj'm e-i(ωmk+2η)tei(ωmk+2η)t

(Em-Ej+ih-η)(Em-Ej'-ih-η)(Em-Ek+2ih-η)(Em-Ek-2ih-η)
 

 = ∑
jj'

 
VkjVkj'VjmVj'm e4ηt

[(Em-Ej)(Em-Ej')+ih-η(Ej-Ej')+h-2η2]((Em-Ek)2+4h-2η2)
 

d
dt |ck(t)|2 =  ∑

jj'
 

4η VkjVkj'VjmVj'm

[(Em-Ej)(Em-Ej')+ih-η(Ej-Ej')+h-2η2]((Em-Ek)2+4h-2η2)
 

Now, look at the limit as η → 0+:
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d
dt |ck(t)|2 ≠ 0 when Em = Ek

lim
η→0+ 

4η
((Em-Ek)2+4h-2η2)

  α δ(Em-Ek)

So, the final result is the 2nd  order golden rule expression:

d
dt |ck(t)|2 = 

2π
h-

 δ(Em-Ek) lim
η→0+ 





∑

j
 

VjmVkj

(Ej - Em - ih-η)

2
 

34.

a. Tnm ≈ 
|<n|V|m>|2

h-2ωnm2  

evaluating <1s|V|2s> (using only the radial portions of the 1s and 2s wavefunctions since

the spherical harmonics will integrate to unity) where V = (e2/r), the change in Coulomb

potential when tritium becomes He:

<1s|V|2s> = ⌡
⌠

2



Z

a0

3
2  e 

-Zr
a0  

1
r 

1

2
 



Z

a0

3
2 





1 - 
Zr
2a0

  e 

-Zr
2a0  r2dr

<1s|V|2s> = 
2

2
 



Z

a0

3
 





⌡
⌠
  re 

-3Zr
2a0  dr - ⌡

⌠ Zr2

2a0
 e 

-3Zr
2a0  dr  

 = 
2

2
 



Z

a0

3
 









1





3Z

2a0

2 - 



Z

2a0
 

2





3Z

2a0

3  
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<1s|V|2s> = 
2

2
 



Z

a0

3
 





22a02

32Z2  - 
23a02

33Z2  

<1s|V|2s> = 
2

2
 



Z

a0

3
 





(3)22a02 - 23a02

33Z2   = 
8Z

227a0
 

Now,

En = -
Z2e2

n22a0
  , E1s = -

Z2e2

2a0
  , E2s = -

Z2e2

8a0
  , E2s - E1s = 

3Z2e2

8a0
  

So,

Tnm = 






8Z

227a0

2







3Z2

8a0

2
  = 

26Z226a02

(2)38a02Z4  = 
211

38Z2  = 0.312 (for Z = 1)

b. ϕm(r) = ϕ1s = 2



Z

a0

3
2  e 

-Zr
a0   Y00

The orthogonality of the spherical harmonics results in only s-states having non-zero

values for Anm.  We can then drop the Y00 (integrating this term will only result in unity)

in determining the value of A1s,2s.

ψn(r) = ψ2s = 
1

2
 



Z

a0

3
2 





1 - 
Zr
2a0

  e 

-Zr
2a0  

Remember for ϕ1s Z = 1 and for ψ2s Z = 2

Anm = ⌡
⌠

2



Z

a0

3
2  e 

-Zr
a0 1

2
 



Z+1

a0

3
2 





1 - 
(Z+1)r

2a0
  e 

-(Z+1)r
2a0   r2dr

Anm = 
2

2



Z

a0

3
2




Z+1

a0

3
2⌡
⌠
  e 

-(3Z+1)r
2a0  





1 - 
(Z+1)r

2a0
  r2dr
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Anm = 
2

2



Z

a0

3
2




Z+1

a0

3
2






⌡
⌠
 r2 e 

-(3Z+1)r
2a0  dr - ⌡


⌠(Z+1)r3

2a0
 e 

-(3Z+1)r
2a0  dr  

We obtain:

Anm = 
2

2



Z

a0

3
2




Z+1

a0

3
2 









2





3Z+1

2a0

3 - 



Z+1

2a0
 

(3)(2)





3Z+1

2a0

4  

Anm = 
2

2



Z

a0

3
2




Z+1

a0

3
2 






24a03

(3Z+1)3 - (Z+1) 
(3)24a03

(3Z+1)4  

Anm = 
2

2



Z

a0

3
2




Z+1

a0

3
2 






-25a03

(3Z+1)4  

Anm = -2 
[ ]23Z(Z+1)

3
2

(3Z+1)4  

The transition probability is the square of this amplitude:

Tnm = 







-2 
[ ]23Z(Z+1)

3
2

(3Z+1)4

2

  = 
211Z3(Z+1)3

(3Z+1)8   = 0.25 (for Z = 1).

The difference in these two results (parts a. and b.) will become negligible at large values

of Z when the perturbation becomes less significant than in the case of Z = 1.

35.
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ε→  is along Z (lab fixed), and µ→  is along z (the C-I molecule fixed bond).  The angle

between Z and z is β:

ε→ . µ→  = εµCosβ = εµD
00
1* (αβγ) 

So,

I = <D
M'K'
J'    | ε→ . µ→ |D

MK
J   > = ⌡

⌠
D

M'K'
J'   ε→. µ→D

MK
J   Sinβdβdγdα

       = εµ⌡⌠D
M'K'
J'   D

00
1* D

MK
J   Sinβdβdγdα.

Now use:

D
M'n'
J'*  D

00
1*   = ∑

jmn

<J'M'10|jm>*D
mn
j* <jn|J'K'10> *,

to obtain:

I = εµ ∑
jmn

<J'M'10|jm>*<jn|J'K'10> *⌡⌠D
mn
j*  D

MK
J   Sinβdβdγdα.

Now use:

⌡⌠D
mn
j*  D

MK
J   Sinβdβdγdα = 

8π2

2J+1  δJjδMmδΚn,

to obtain:

I = εµ
8π2

2J+1 ∑
jmn

<J'M'10|jm>*<jn|J'K'10> *δJjδMmδΚn

  = εµ
8π2

2J+1 <J'M'10|JM><JK|J'K'10>.

We use:
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<JK|J'K'10> = 2J+1(-i)(J'-1+K)  K' 0 K
J' 1 J  

and,

<J'M'10|JM> = 2J+1(-i)(J'-1+M) M' 0 M
J' 1 J  

to give:

I = εµ
8π2

2J+1 2J+1(-i)(J'-1+M) M' 0 M
J' 1 J  2J+1(-i)(J'-1+K)  K' 0 K

J' 1 J  

  = εµ8π2(-i)(J'-1+M+J'-1+K) M' 0 M
J' 1 J   K' 0 K

J' 1 J  

  = εµ8π2(-i)(M+K) M' 0 M
J' 1 J   K' 0 K

J' 1 J  

The 3-J symbols vanish unless: K' + 0 = K and M' + 0 = M.

So,

I = εµ8π2(-i)(M+K) M 0 M
J' 1 J   K 0 K

J' 1 J  δM'MδK'K.

b.  M 0 M
J' 1 J   and  K 0 K

J' 1 J   vanish unless J' = J + 1, J, J - 1

∴ ∆J = ±1, 0

The K quantum number can not change because the dipole moment lies along the

molecule's C3 axis and the light's electric field thus can exert no torque that twists the

molecule about this axis. As a result, the light can not induce transitions that excite the

molecule's spinning motion about this axis.

36.
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a. B atom: 1s22s22p1, 2P ground state L = 1, S = 
1
2 , gives a degeneracy ((2L+1)(2S+1))

of 6.

O atom: 1s22s22p4, 3P ground state L = 1, S = 1, gives a degeneracy

((2L+1)(2S+1)) of 9.

The total number of states formed is then (6)(9) = 54.

b. We need only consider the p orbitals to find the low lying molecular states:

2π

1π

6σ

5σ

 2p2p

Which, in reality look like this:

5σ

6σ

1π

2π

This is the correct ordering to give a 2Σ+ ground state.  The only low-lying electron

configurations are 1π35σ2 or 1π45σ1.  These lead to 2Π and 2Σ+ states, respectively.
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c. The bond orders in both states are 2.5.

d. The 2Σ is + but g/u symmetry cannot be specified since this is a heteronuclear

molecule.

e. Only one excited state, the 2Π, is spin-allowed to radiate to the 2Σ+.  Consider

symmetries of transition moment operators that arise in the electric dipole contributions

to the transition rate  z → Σ+, x,y → Π, ∴ the 2Π → 2Σ+ is electric dipole allowed via a

perpendicular band.

f. Since ionization will remove a bonding electron, the BO+ bond is weaker than

the BO bond.

g. The ground state BO+ is 1Σ+ corresponding to a 1π4 electron configuration.  An

electron configuration of 1π3 5σ1 leads to a 3Π and a 1Π state.  The 3Π will be lower in

energy.  A 1π2 5σ2 configuration will lead to higher lying states of 3Σ-, 1∆, and 1Σ+.

h. There should be 3 bands corresponding to formation of BO+ in the 1Σ+, 3Π,

and 1Π states.  Since each of these involves removing a bonding electron, the Franck-

Conden integrals will be appreciable for several vibrational levels, and thus a vibrational

progression should be observed.

37.

a. The bending (π) vibration is degenerate.

b. H---C≡N
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        ⇑

bending fundamental

c. H---C≡N

        ⇑

stretching fundamental

d. CH stretch (ν3 in figure) is σ, CN stretch is σ, and HCN (ν2 in figure) bend is

π.

e. Under z (σ) light the CN stretch and the CH stretch can be excited, since ψ0 =

σ, ψ1 = σ and z = σ provides coupling.

f. Under x,y (π) light the HCN bend can be excited, since ψ0 = σ, ψ1 = π and x,y

= π provides coupling.

g. The bending vibration is active under (x,y) perpendicular polarized light.  ∆J =

0, ±1 are the selection rules for ⊥ transitions.  The CH stretching vibration is active under

(z) || polarized light.  ∆J = ±1 are the selection rules for || transitions.
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38.

 F φi = εi φj = h φi + ∑
j

 [ ]Jj - Kj   φi

Let the closed shell Fock potential be written as:

Vij = ∑
k

  2< >ik|jk  - < >ik|kj   , and the 1e- component as:

hij = <  φi| - 
1
2 ∇2 - ∑

A

 
ZA

|r - RA|  |φj >  , and the delta as:

δij = < >i|j   , so that: hij + Vij = δijεi.

using: φi = ∑
µ

Cµiχµ  , φj = ∑
ν

Cνjχν  , and φk = ∑
γ

Cγkχγ  , and transforming from the MO

to AO basis we obtain:

Vij = ∑
kµγνκ

  CµiCγkCνjCκk 2< >µγ|νκ  - < >µγ|κν  

      = ∑
kµγνκ

 (CγkCκk)(CµiCνj)
 2< >µγ|νκ  - < >µγ|κν  

      = ∑
µν

 (CµiCνj) Vµν where,

Vµν = ∑
γκ

  Pγκ 2< >µγ|νκ  - < >µγ|κν  , and Pγκ = ∑
k

 (CγkCκk) ,

hij = ∑
µν

 (CµiCνj) hµν , where
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hµν = <  χµ| - 
1
2 ∇2 - ∑

A

 
ZA

|r - RA|  |χν >  , and

δij = < >i|j   = ∑
µν

 (CµiSµνCνj) .

So, hij + Vij = δijεj becomes:

∑
µν

 (CµiCνj) hµν + ∑
µν

 (CµiCνj) Vµν = ∑
µν

 (CµiSµνCνj) εj ,

∑
µν

 (CµiSµνCνj) εj - ∑
µν

 (CµiCνj) hµν - ∑
µν

 (CµiCνj) Vµν = 0 for all i,j

∑
µν

  Cµi[ ]εjSµν - hµν - Vµν  Cνj = 0 for all i,j

Therefore,

∑
ν

 [ ]hµν + Vµν - εjSµν -  Cνj = 0

This is FC = SCE in the AO basis.

39.

The Slater Condon rule for zero (spin orbital) difference with N electrons in N spin

orbitals is:
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E = < >|H + G|   = ∑
i

N
 < >φi|h|φi   + ∑

i>j

N
  < >φiφj|g|φiφj  - < >φiφj|g|φjφi  

        = ∑
i

hii  + ∑
i>j

 ( )gijij - gijji  

        = ∑
i

hii  + 
1
2∑

ij
 ( )gijij - gijji  

If all orbitals are doubly occupied and we carry out the spin integration we obtain:

E = 2 ∑
i

occ
hii  + ∑

ij

occ
 ( )2gijij - gijji  ,

where i and j now refer to orbitals (not spin-orbitals).

40.

If the occupied orbitals obey Fφk = εkφk ,  then the expression for E in problem 39 can be

rewritten as.

E = ∑
i

occ

  










hii + ∑
j

occ
 ( )2gijij - gijji   + ∑

i

occ
hii 

We recognize the closed shell Fock operator expression and rewrite this as:

E = ∑
i

occ
Fii  + ∑

i

occ
hii  = ∑

i

occ

( )εi + hii  



102

41.

I will use the QMIC software to do this problem.  Lets just start from the beginning.  Get

the starting "guess" MO coefficients on disk.  Using the program MOCOEFS it asks us

for the first and second MO vectors.  We input 1, 0 for the first mo (this means that the

first MO is 1.0 times the He 1s orbital plus 0.0 times the H 1s orbital; this bonding MO is

more likely to be heavily weighted on the atom having the higher nuclear charge) and 0,

1 for the second.  Our beginning LCAO-MO array looks like:  




1.0 0.0

0.0 1.0
  and is placed

on disk in a file we choose to call "mocoefs.dat".  We also put the AO integrals on disk

using the program RW_INTS.  It asks for the unique one- and two- electron integrals and

places a canonical list of these on disk in a file we choose to call "ao_integrals.dat".  At

this point it is useful for us to step back and look at the set of equations which we wish to

solve: FC = SCE.  The QMIC software does not provide us with a so-called generalized

eigenvalue solver (one that contains an overlap matrix; or metric), so in order to use the

diagonalization program that is provided we must transform this equation (FC = SCE) to

one that looks like (F'C' = C'E).  We do that in the following manner:

Since S is symmetric and positive definite we can find an S
-
1
2
  such that S

-
1
2
 S

+
1
2
  = 1, S

-
1
2

S = S
+

1
2
 , etc.
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rewrite FC = SCE by inserting unity between FC and multiplying the whole equation on

the left by S
-
1
2
 .  This gives:

S
-
1
2
 FS

-
1
2
 S

+
1
2
 C = S

-
1
2
 SCE = S

+
1
2
 CE.

Letting: F' = S
-
1
2
 FS

-
1
2
 

C' = S
+

1
2
 C, and inserting these expressions above give:

F'C' = C'E

Note, that to get the next iteration’s MO coefficients we must calculate C from C':

C' = S
+

1
2
 C, so, multiplying through on the left by S

-
1
2
  gives:

S
-
1
2
 C' = S

-
1
2
 S

+
1
2
 C = C

This will be the method we will use to solve our fock equations.

Find S
-
1
2
  by using the program FUNCT_MAT (this program generates a function of a

matrix).  This program will ask for the elements of the S array and write to disk a file

(name of your choice ... a good name might be "shalf") containing the S
-
1
2
  array.  Now

we are ready to begin the iterative Fock procedure.

a. Calculate the Fock matrix, F, using program FOCK which reads in the MO

coefficients from "mocoefs.dat" and the integrals from "ao_integrals.dat" and writes the

resulting Fock matrix to a user specified file (a good filename to use might be something

like "fock1").
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b. Calculate F' = S
-
1
2
 FS

-
1
2
  using the program UTMATU which reads in F and S

-
1
2
  

from files on the disk and writes F' to a user specified file (a good filename to use might

be something like "fock1p").  Diagonalize F' using the program DIAG.  This program

reads in the matrix to be diagonalized from a user specified filename and writes the

resulting eigenvectors to disk using a user specified filename (a good filename to use

might be something like "coef1p").  You may wish to choose the option to write the

eigenvalues (Fock orbital energies) to disk in order to use them at a later time in program

FENERGY.  Calculate C by using. C = S
-
1
2
 C'.  This is accomplished by using the

program MATXMAT which reads in two matrices to be multiplied from user specified

files and writes the product to disk using a user specified filename (a good filename to

use might be something like "mocoefs.dat").

c. The QMIC program FENERGY calculates the total energy:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν  , and

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν  .

This is the conclusion of one iteration of the Fock procedure ... you may continue by

going back to part a. and proceeding onward.

d. and e. Results for the successful convergence of this system using the supplied

QMIC software are as follows (this data is provided to give the student assurance that
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they are on the right track; alternatively one could switch to the QMIC program SCF and

allow that program to iteratively converge the Fock equations):

The one-electron AO integrals: 




-2.644200 -1.511300

-1.511300 -1.720100
 

The two-electron AO integrals:

   1  1  1  1    1.054700

   2  1  1  1    0.4744000

   2  1  2  1    0.5664000

   2  2  1  1    0.2469000

   2  2  2  1    0.3504000

   2  2  2  2    0.6250000

The "initial" MO-AO coefficients: 




1.000000 0.000000

0.000000 1.000000
 

AO overlap matrix (S):




1.000000 0.578400

0.578400 1.000000
 

S 
-
1
2  





1.168032 -0.3720709

-0.3720709 1.168031
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**************

ITERATION 1

**************

The charge bond order matrix: 




1.000000 0.0000000

0.0000000 0.0000000
 

The Fock matrix (F): 




-1.589500 -1.036900 

-1.036900 -0.8342001
 

S 
-
1
2  F S 

-
1
2  





-1.382781 -0.5048679

-0.5048678 -0.4568883
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.604825 -0.2348450  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:





-0.9153809 -0.4025888

-0.4025888  0.9153810
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The "new" MO-AO coefficients (C = S 
-
1
2  * C'):





-0.9194022 -0.8108231

-0.1296498  1.218985
 

The one-electron MO integrals:





-2.624352 -0.1644336

-0.1644336 -1.306845 
 

The two-electron MO integrals:

   1  1  1  1    0.9779331

   2  1  1  1    0.1924623

   2  1  2  1    0.5972075

   2  2  1  1    0.1170838

   2  2  2  1   -0.0007945194

   2  2  2  2    0.6157323

The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν    = -2.84219933
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from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν    = -2.80060530

the difference is: -0.04159403

**************

ITERATION 2

**************

The charge bond order matrix: 




0.8453005  0.1192003

0.1192003 0.01680906
 

The Fock matrix: 




-1.624673 -1.083623 

-1.083623 -0.8772071
 

S 
-
1
2  F S 

-
1
2  





-1.396111 -0.5411037

-0.5411037 -0.4798213
 

The eigenvalues of this matrix (Fock orbital energies) are:
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[ ]-1.646972 -0.2289599  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:





-0.9072427 -0.4206074

-0.4206074  0.9072427
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):





-0.9031923 -0.8288413

-0.1537240  1.216184 
 

The one-electron MO integrals:





-2.617336 -0.1903475

-0.1903475 -1.313861 
 

The two-electron MO integrals:

   1  1  1  1    0.9626070

   2  1  1  1    0.1949828
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   2  1  2  1    0.6048143

   2  2  1  1    0.1246907

   2  2  2  1    0.003694540

   2  2  2  2    0.6158437

The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν    = -2.84349298

from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν    = -2.83573675

the difference is: -0.00775623

**************

ITERATION 3

**************

The charge bond order matrix: 




0.8157563 0.1388423 

0.1388423 0.02363107
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The Fock matrix: 




-1.631153 -1.091825 

-1.091825 -0.8853514
 

S 
-
1
2  F S 

-
1
2  





-1.398951 -0.5470731

-0.5470730 -0.4847007
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.654745 -0.2289078  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:





-0.9058709 -0.4235546

-0.4235545  0.9058706
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):





-0.9004935 -0.8317733

-0.1576767  1.215678 
 

The one-electron MO integrals:



112





-2.616086 -0.1945811

-0.1945811 -1.315112 
 

The two-electron MO integrals:

   1  1  1  1    0.9600707

   2  1  1  1    0.1953255

   2  1  2  1    0.6060572

   2  2  1  1    0.1259332

   2  2  2  1    0.004475587

   2  2  2  2    0.6158972

The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν    = -2.84353018

from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν    = -2.84225941
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the difference is: -0.00127077

**************

ITERATION 4

**************

The charge bond order matrix: 




0.8108885 0.1419869 

0.1419869 0.02486194
 

The Fock matrix: 




-1.632213 -1.093155 

-1.093155 -0.8866909
 

S 
-
1
2  F S 

-
1
2  





-1.399426 -0.5480287

-0.5480287 -0.4855191
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.656015 -0.2289308  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:





-0.9056494 -0.4240271

-0.4240271  0.9056495
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The "new" MO-AO coefficients (C = S 
-
1
2  * C'):





-0.9000589 -0.8322428

-0.1583111  1.215595 
 

The one-electron MO integrals:





-2.615881 -0.1952594

-0.1952594 -1.315315 
 

The two-electron MO integrals:

   1  1  1  1    0.9596615

   2  1  1  1    0.1953781

   2  1  2  1    0.6062557

   2  2  1  1    0.1261321

   2  2  2  1    0.004601604

   2  2  2  2    0.6159065

The closed shell Fock energy from formula:
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∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν    = -2.84352922

from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν    = -2.84332418

the difference is: -0.00020504

**************

ITERATION 5

**************

The charge bond order matrix: 




0.8101060 0.1424893 

0.1424893 0.02506241
 

The Fock matrix: 




-1.632385 -1.093368 

-1.093368 -0.8869066
 

S 
-
1
2  F S 

-
1
2  





-1.399504 -0.5481812

-0.5481813 -0.4856516
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The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.656219 -0.2289360  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:





-0.9056138 -0.4241026

-0.4241028  0.9056141
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):





-0.8999892 -0.8323179

-0.1584127  1.215582 
 

The one-electron MO integrals:





-2.615847 -0.1953674

-0.1953674 -1.315348 
 

The two-electron MO integrals:

   1  1  1  1    0.9595956
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   2  1  1  1    0.1953862

   2  1  2  1    0.6062872

   2  2  1  1    0.1261639

   2  2  2  1    0.004621811

   2  2  2  2    0.6159078

The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν    = -2.84352779

from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν    = -2.84349489

the difference is: -0.00003290

**************

ITERATION 6

**************



118

The charge bond order matrix: 




0.8099805 0.1425698 

0.1425698 0.02509460
 

The Fock matrix: 




-1.632412 -1.093402 

-1.093402 -0.8869413
 

S 
-
1
2  F S 

-
1
2  





-1.399517 -0.5482056

-0.5482056 -0.4856730
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.656253 -0.2289375  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:





-0.9056085 -0.4241144

-0.4241144  0.9056086
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):





-0.8999786 -0.8323296

-0.1584283  1.215580 
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The one-electron MO integrals:





-2.615843 -0.1953846

-0.1953846 -1.315353 
 

The two-electron MO integrals:

   1  1  1  1    0.9595859

   2  1  1  1    0.1953878

   2  1  2  1    0.6062925

   2  2  1  1    0.1261690

   2  2  2  1    0.004625196

   2  2  2  2    0.6159083

The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν    = -2.84352827

from formula:
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∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν    = -2.84352398

the difference is: -0.00000429

**************

ITERATION 7

**************

The charge bond order matrix: 




0.8099616 0.1425821 

0.1425821 0.02509952
 

The Fock matrix: 




-1.632416 -1.093407 

-1.093407 -0.8869464
 

S 
-
1
2  F S 

-
1
2  





-1.399519 -0.5482093

-0.5482092 -0.4856761
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.656257 -0.2289374  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:
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-0.9056076 -0.4241164

-0.4241164  0.9056077
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):





-0.8999770 -0.8323317

-0.1584310  1.215580 
 

The one-electron MO integrals:





-2.615843 -0.1953876

-0.1953876 -1.315354 
 

The two-electron MO integrals:

   1  1  1  1    0.9595849

   2  1  1  1    0.1953881

   2  1  2  1    0.6062936

   2  2  1  1    0.1261697

   2  2  2  1    0.004625696

   2  2  2  2    0.6159083
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The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν    = -2.84352922

from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν    = -2.84352827

the difference is: -0.00000095

**************

ITERATION 8

**************

The charge bond order matrix: 




0.8099585 0.1425842 

0.1425842 0.02510037
 

The Fock matrix: 




-1.632416 -1.093408 

-1.093408 -0.8869470
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S 
-
1
2  F S 

-
1
2  





-1.399518 -0.5482103

-0.5482102 -0.4856761
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.656258 -0.2289368  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:





-0.9056074 -0.4241168

-0.4241168  0.9056075
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):





-0.8999765 -0.8323320

-0.1584315  1.215579 
 

The one-electron MO integrals:





-2.615842 -0.1953882

-0.1953882 -1.315354 
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The two-electron MO integrals:

   1  1  1  1    0.9595841

   2  1  1  1    0.1953881

   2  1  2  1    0.6062934

   2  2  1  1    0.1261700

   2  2  2  1    0.004625901

   2  2  2  2    0.6159081

The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν    = -2.84352827

from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν    = -2.84352827

the difference is: 0.00000000

f. In looking at the energy convergence we see the following:
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Iter Formula 1 Formula 2

1 -2.84219933 -2.80060530

2 -2.84349298 -2.83573675

3 -2.84353018 -2.84225941

4 -2.84352922 -2.84332418

5 -2.84352779 -2.84349489

6 -2.84352827 -2.84352398

7 -2.84352922 -2.84352827

8 -2.84352827 -2.84352827

If you look at the energy differences (SCF at iteration n - SCF converged) and plot this

data versus iteration number, and do a 5th order polynomial fit, we see the following:

0 2 4 6 8 10
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Iteration

S
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C

F(
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n
v)

y = 0.144 - 0.153x + 0.063x^2 - 0.013x^3 + 0.001x^4   R = 1.00
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In looking at the polynomial fit we see that the convergence is primarily linear since the

coefficient of the linear term is much larger than those of the cubic and higher terms.

g. The converged SCF total energy calculated using the result of problem 40 is an

upper bound to the ground state energy, but, during the iterative procedure it is not.  Only

at convergence does the expectation value of the Hamiltonian for the Hartree Fock

determinant become equal to that given by the equation in problem 40.

h. Yes, the 1σ2 configuration does dissociate properly because at at R→∞ the

lowest energy state is He + H+, which also has a 1σ2 orbital occupancy (i.e., 1s2 on He

and 1s0 on H+).

42.

2. At convergence the MO coefficients are:

φ1 = 




-0.8999765

-0.1584315
 φ2 = 





-0.8323320

 1.215579 
 

and the integrals in this MO basis are:

h11 = -2.615842 h21 = -0.1953882 h22 = -1.315354

g1111 = 0.9595841 g2111 = 0.1953881 g2121 = 0.6062934

g2211 = 0.1261700 g2221 = 004625901 g2222 = 0.6159081

a. H = 




<1σ2|H|1σ2> <1σ2|H|2σ2>

<2σ2|H|1σ2> <2σ2|H|2σ2>
  = 





2h11 + g1111 g1122

g1122 2h22 + g2222
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 = 




2*-2.615842 + 0.9595841 0.1261700

0.1261700 2*-1.315354 + 0.6159081
 

 = 




-4.272100 0.126170

0.126170 -2.014800
 

b. The eigenvalues are E1 = -4.279131 and E2 = -2.007770.  The corresponding

eigenvectors are:

C1 = 




-.99845123

0.05563439
 , C2 = 





0.05563438

0.99845140
 

c.

1
2 

 














a

1
2
φ1 + b

1
2
φ2 α





a

1
2
φ1 - b

1
2
φ2 β  + 

 








a

1
2
φ1 - b

1
2
φ2 α





a

1
2
φ1 + b

1
2
φ2 β  

 = 
1

2 2
 
 








a

1
2
φ1 + b

1
2
φ2 





a

1
2
φ1 - b

1
2
φ2  + 

 


a

1
2
φ1 - b

1
2
φ2 





a

1
2
φ1 + b

1
2
φ2  (αβ - βα) 

 = 
1

2( )aφ1φ1 - bφ2φ2  (αβ - βα) 

 = a| |φ1αφ1β   - b| |φ2αφ2β  .

d. The third configuration |1σ2σ| = 
1

2[ ]|1α2β| - |1β2α|  ,

Adding this configuration to the previous 2x2 CI results in the following 3x3 'full' CI:

H = 









<1σ2|H|1σ2> <1σ2|H|2σ2> <1σ2|H|1σ2σ>

<2σ2|H|1σ2> <2σ2|H|2σ2> <2σ2|H|1σ2σ>

<1σ2σ|H|1σ2> <2σ2|H|1σ2σ> <1σ2σ|H|1σ2σ>
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 = 









2h11 + g1111 g1122

1

2[ ]2h12 + 2g2111

g1122 2h22 + g2222
1

2[ ]2h12 + 2g2221

1

2[ ]2h12 + 2g2111
1

2[ ]2h12 + 2g2221 h11 + h22 + g2121 + g2211

 

Evaluating the new matrix elements:

H13 = H31 = 2 *(-0.1953882 + 0.1953881) = 0.0

H23 = H32 = 2 *(-0.1953882 + 0.004626) = -0.269778

H33 = -2.615842 - 1.315354 + 0.606293 + 0.126170

      = -3.198733

 = 








-4.272100 0.126170 0.0

0.126170 -2.014800 -0.269778

0.0 -0.269778 -3.198733

 

e. The eigenvalues are E1 = -4.279345, E2 = -3.256612 and E3 = -1.949678.  The

corresponding eigenvectors are:

C1 = 








-0.99825280

0.05732290

0.01431085

 , C2 = 








-0.02605343

-0.20969283

-0.97742000

 , C3 = 








-0.05302767

-0.97608540

0.21082004

 

f. We need the non-vanishing matrix elements of the dipole operator in the MO

basis.  These can be obtained by calculating them by hand.  They are more easily

obtained by using the TRANS program.  Put the 1e- AO integrals  on disk by running the
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program RW_INTS.  In this case you are inserting z11 = 0.0, z21 = 0.2854, and z22 = 1.4

(insert 0.0 for all the 2e- integrals) ... call the output file "ao_dipole.ints" for example.

The converged MO-AO coefficients should be in a file ("mocoefs.dat" is fine).  The

transformed integrals can be written to a file (name of your choice) for example

"mo_dipole.ints".  These matrix elements are:

z11 = 0.11652690, z21 = -0.54420990, z22 = 1.49117320

The excitation energies are E2 - E1 = -3.256612 - -4.279345 = 1.022733, and

E3 - E1 = -1.949678.- -4.279345 = 2.329667.

Using the Slater-Conden rules to obtain the matrix elements between configurations we

obtain:

Hz = 









<1σ2|z|1σ2> <1σ2|z|2σ2> <1σ2|z|1σ2σ>

<2σ2|z|1σ2> <2σ2|z|2σ2> <2σ2|z|1σ2σ>

<1σ2σ|z|1σ2> <2σ2|z|1σ2σ> <1σ2σ|z|1σ2σ>

 

    = 









2z11 0

1

2[ ]2z12

0 2z22
1

2[ ]2z12

1

2[ ]2z12
1

2[ ]2z12 z11 + z22

 

    = 








0.233054 0 -0.769629

0 2.982346 -0.769629

-0.769629 -0.769629 1.607700

 

Now, <Ψ1|z|Ψ2> = C1THzC2, (this can be accomplished with the program UTMATU)
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 = 





-0.99825280

0.05732290

0.01431085

 

T

 





0.233054 0 -0.769629

0 2.982346 -0.769629

-0.769629 -0.769629 1.607700

 





-0.02605343

-0.20969283

-0.97742000

 

 = -.757494

and, <Ψ1|z|Ψ3> = C1THzC3

 = 





-0.99825280

0.05732290

0.01431085

 

T

 





0.233054 0 -0.769629

0 2.982346 -0.769629

-0.769629 -0.769629 1.607700

 





-0.05302767

-0.97608540

0.21082004

 

 = 0.014322

g. Using the converged coefficients the orbital energies obtained from solving the

Fock equations are ε1 = -1.656258 and ε2 = -0.228938.  The resulting expression for the

PT first-order wavefunction becomes:

|1σ2>(1) = - 
g2211

2(ε2 - ε1)  |2σ2>

|1σ2>(1) = - 
0.126170

2(-0.228938 + 1.656258)  |2σ2>

|1σ2>(1) = -0.0441982|2σ2>

h. As you can see from part c., the matrix element <1σ2|H|1σ2σ> = 0 (this is also

a result of the Brillouin theorem) and hence this configuration does not enter into the

first-order wavefunction.

i. |0> = |1σ2> - 0.0441982|2σ2>.  To normalize we divide by:

[ ]1 + (0.0441982)2   = 1.0009762
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|0> = 0.999025|1σ2> - 0.044155|2σ2>

In the 2x2 CI we obtained:

|0> = 0.99845123|1σ2> - 0.05563439|2σ2>

j. The expression for the 2nd order RSPT is:

E(2) = - 
|g2211|2

2(ε2 - ε1)  = - 
0.1261702

2(-0.228938 + 1.656258) 

= -0.005576 au

Comparing the 2x2 CI energy obtained to the SCF result we have:

-4.279131 - (-4.272102) = -0.007029 au

43. STO total energy: -2.8435283

STO3G total energy -2.8340561

3-21G total energy -2.8864405

The STO3G orbitals were generated as a best fit of 3 primitive Gaussians (giving 1

CGTO) to the STO.  So, STO3G can at best reproduce the STO result.  The 3-21G

orbitals  are more flexible since there are 2 CGTOs per atom.  This gives 4 orbitals

(more parameters to optimize) and a lower total energy.

44.

R HeH+ Energy H2 Energy

1.0 -2.812787056 -1.071953297

1.2 -2.870357513 -1.113775015
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1.4 -2.886440516 -1.122933507

1.6 -2.886063576 -1.115567684

1.8 -2.880080938 -1.099872589

2.0 -2.872805595 -1.080269098

2.5 -2.856760263 -1.026927710

10.0 -2.835679293 -0.7361705303

Plotting total energy vs. geometry for HeH+:
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Plotting total energy  vs. geometry for H2:
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For HeH+ at R = 10.0 au, the eigenvalues of the converged Fock matrix and the

corresponding converged MO-AO coefficients are:

-.1003571E+01 -.4961988E+00  .5864846E+00  .1981702E+01

 .4579189E+00 -.8245406E-05  .1532163E-04  .1157140E+01

 .6572777E+00 -.4580946E-05 -.6822942E-05 -.1056716E+01

-.1415438E-05  .3734069E+00  .1255539E+01 -.1669342E-04

 .1112778E-04  .7173244E+00 -.1096019E+01  .2031348E-04

Notice that this indicates that orbital 1 is a combination of the s functions on He only

(dissociating properly to He + H+).
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For H2 at R = 10.0 au, the eigenvalues of the converged Fock matrix and the

corresponding converged MO-AO coefficients are:

-.2458041E+00 -.1456223E+00  .1137235E+01  .1137825E+01

 .1977649E+00 -.1978204E+00  .1006458E+01 -.7903225E+00

 .5632566E+00 -.5628273E+00 -.8179120E+00  .6424941E+00

 .1976312E+00  .1979216E+00  .7902887E+00  .1006491E+01

 .5629326E+00  .5631776E+00 -.6421731E+00 -.8181460E+00

Notice that this indicates that orbital 1 is a combination of the s functions on both H

atoms (dissociating improperly; equal probabilities of H2 dissociating to two neutral

atoms or to a proton plus hydride ion).

45. The H2 CI result:

R 1Σg+ 3Σu+ 1Σu+ 1Σg+

  1.0 -1.074970 -0.5323429 -0.3997412  0.3841676

  1.2 -1.118442 -0.6450778 -0.4898805  0.1763018

  1.4 -1.129904 -0.7221781 -0.5440346  0.0151913

  1.6 -1.125582 -0.7787328 -0.5784428 -0.1140074

  1.8 -1.113702 -0.8221166 -0.6013855 -0.2190144

  2.0 -1.098676 -0.8562555 -0.6172761 -0.3044956
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  2.5 -1.060052 -0.9141968 -0.6384557 -0.4530645

  5.0 -0.9835886 -0.9790545 -0.5879662 -0.5802447

  7.5 -0.9806238 -0.9805795 -0.5247415 -0.5246646

10.0 -0.980598 -0.9805982 -0.4914058 -0.4913532
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For H2 at R = 1.4 au, the eigenvalues of the Hamiltonian matrix and the corresponding

determinant amplitudes are:

determinant -1.129904 -0.722178 -0.544035 0.015191
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|1σgα1σgβ|  0.99695  0.00000  0.00000  0.07802

|1σgβ1σuα|  0.00000  0.70711  0.70711  0.00000

|1σgα1σuβ|  0.00000  0.70711 -0.70711  0.00000

|1σuα1σuβ| -0.07802  0.00000  0.00000  0.99695

This shows, as expected, the mixing of the first 1Σg+ (1σg2) and the 2nd 1Σg+ (1σu2)

determinants in the first and fourth states, and the

3Σu+ = (
1

2( )|1σgβ1σuα| + |1σgα1σuβ|  ),

and  1Σu+=  (
1

2( )|1σgβ1σuα| - |1σgα1σuβ|  )

states as the second and third states.

Also notice that the first 1Σg+ state has coefficients (0.99695 - 0.07802) (note specifically

the + - combination) and the second 1Σg+ state has the opposite coefficients with the

same signs (note specifically the + + combination).  The + + combination always gives a

higher energy than the + - combination.

46.

F atoms have 1s22s22p5   2P ground electronic states that are split by spin-orbit coupling

into 2P3/2 and 2P1/2 states that differ by only 0.05 eV in energy.
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a.

The degeneracy of a state having a given J is 2J+1, and the J=3/2 state is lower in energy

because the 2p orbital shell is more than half filled (I learned this in inorganic chemistry

class), so

qel = 4 exp(-0/kT) + 2 exp(-0.05 eV/kT).

0.05 eV is equivalent to k(500 K), so 0.05/kT = 500/T, hence

qel = 4 exp(-0/kT) + 2 exp(-500/T).

b.

Q = qN/N!

so, ln Q = N lnq – lnN!

E =kT2  ∂lnQ/∂T = NkT2 ∂lnq/∂T = Nk{1000 exp(-500/T)/[4 + 2 exp(-500/T)]}

c. Using the fact that kT=0.03eV at T=300°K, make a (qualitative) graph of   E /N vs T for

T ranging from 100°K to 3000°K.
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T

E/N

T = 100 K

T = 3000 K

1000k/6

At T = 100 K, E/N is small and equal to 1000k exp(-5)/(4 + 2 exp(-5)).

At T = 3000 K, E/N has grown to 1000k exp(-1/6)/(4 + 2 exp(-1/6)) which is

approximately 1000k/6.

47.

a.

The difference between a linear and bent transition state would arise in the vibrational

and rotational partition functions. For the linear TS, one has 3N-6 vibrations (recall that
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one loses one vibration as a reaction coordinate), but for the bent TS, one has 3N-7

vibrations. For the linear TS, one has 2 rotational axes, and for the bent TS, one has 3.

So the ratio of rate constants will reduce to ratios of vibration and rotation partition

functions. In particular, one will have

klinear/kbent = (qvib
3N-6 qrot

2/qvib
3N-7qrot

3) = (qvib/qrot).

b. Using

qt ~ 108, qr ~ 102, qv ~ 1,

I would expect klinear/kbent to be of the order of 1/102 = 10-2.
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48.

Constructing the Slater determinant corresponding to the "state" 1s(α)1s(α) with the rows

labeling the orbitals and the columns labeling the electron gives:

|1sα1sα| = 
1

2!



1sα(1) 1sα(2)

1sα(1) 1sα(2)
 

     = 
1

2
 ( )1sα(1)1sα(2) - 1sα(1)1sα(2)  

     = 0

49.

Starting with the MS=1 3S state (which in a "box" for this ML=0, MS=1 case would

contain only one product function; |1sα2sα|) and applying S- gives:

S- 3S(S=1,MS=1) = 1(1 + 1) - 1(1 - 1) h∼ 3S(S=1,MS=0)

= h∼ 2  3S(S=1,MS=0)

= ( )S-(1) + S-(2)   |1sα2sα|

= S-(1)|1sα2sα| + S-(2)|1sα2sα|

= h∼ 
1
2



1

2 + 1  - 
1
2



1

2 - 1   |1sβ2sα|

 + h∼ 
1
2



1

2 + 1  - 
1
2



1

2 - 1   |1sα2sβ|
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= h∼ ( )|1sβ2sα| + |1sα2sβ|  

So, h∼ 2  3S(S=1,MS=0) = h∼ ( )|1sβ2sα| + |1sα2sβ|  

       3S(S=1,MS=0) = 
1

2
 ( )|1sβ2sα| + |1sα2sβ|  

The three triplet states are then:

3S(S=1,MS=1)= |1sα2sα|,

3S(S=1,MS=0) = 
1

2
 ( )|1sβ2sα| + |1sα2sβ|  , and

3S(S=1,MS=-1) = |1sβ2sβ|.

The singlet state which must be constructed orthogonal to the three singlet states (and in

particular to the 3S(S=1,MS=0) state) can be seen to be:

1S(S=0,MS=0) = 
1

2
 ( )|1sβ2sα| - |1sα2sβ|  .

Applying S2 and Sz to each of these states gives:

Sz |1sα2sα| = ( )Sz(1) + Sz(2)   |1sα2sα|

= Sz(1)|1sα2sα| + Sz(2))|1sα2sα|

= h∼ 



1

2   |1sα2sα| + h∼ 



1

2   |1sα2sα|

= h∼  |1sα2sα|

S2 |1sα2sα| = (S-S+ + Sz2 + h∼ Sz) |1sα2sα|

= S-S+|1sα2sα| + Sz2|1sα2sα| + h∼ Sz|1sα2sα|

= 0 + h∼ 2 |1sα2sα| + h∼ 2|1sα2sα|

= 2h∼ 2 |1sα2sα|
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Sz 
1

2
 ( )|1sβ2sα| + |1sα2sβ|   = ( )Sz(1) + Sz(2)  

1

2
 ( )|1sβ2sα| + |1sα2sβ|  

= 
1

2
 ( )Sz(1) + Sz(2)   |1sβ2sα|

+ 
1

2
 ( )Sz(1) + Sz(2)   |1sα2sβ|

= 
1

2
 





h∼ 





-
1
2  + h∼ 



1

2   |1sβ2sα|

+ 
1

2
 





h∼ 



1

2  + h∼ 





-
1
2   |1sα2sβ|

= 0h∼ 
1

2
 ( )|1sβ2sα| + |1sα2sβ|  

S2 
1

2
 ( )|1sβ2sα| + |1sα2sβ|   = (S-S+ + Sz2 + h∼ Sz)

1

2
 ( )|1sβ2sα| + |1sα2sβ|  

= S-S+ 
1

2
 ( )|1sβ2sα| + |1sα2sβ|  

= 
1

2( )S-(S+(1) + S+(2))|1sβ2sα| + S-(S+(1) + S+(2))|1sα2sβ|  

= 
1

2( )S- h∼ |1sα2sα| + S- h∼ |1sα2sα|  

= 2 h∼ 
1

2( )(S-(1) + S-(2))|1sα2sα|  

= 2 h∼ 
1

2( )h∼|1sβ2sα| + h∼|1sα2sβ|  

= 2 h∼ 2 
1

2( )|1sβ2sα| + |1sα2sβ|  

Sz |1sβ2sβ| = ( )Sz(1) + Sz(2)   |1sβ2sβ|

= Sz(1)|1sβ2sβ| + Sz(2))|1sβ2sβ|
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= h∼ 





-
1
2   |1sβ2sβ| + h∼ 





-
1
2   |1sβ2sβ|

= -h∼  |1sβ2sβ|

S2 |1sβ2sβ| = (S+S- + Sz2 - h∼ Sz) |1sβ2sβ|

= S+S-|1sβ2sβ| + Sz2|1sβ2sβ| - h∼ Sz|1sβ2sβ|

= 0 + h∼ 2 |1sβ2sβ| + h∼ 2|1sβ2sβ|

= 2h∼ 2 |1sβ2sβ|

Sz 
1

2
 ( )|1sβ2sα| - |1sα2sβ|   = ( )Sz(1) + Sz(2)  

1

2
 ( )|1sβ2sα| - |1sα2sβ|  

= 
1

2
 ( )Sz(1) + Sz(2)   |1sβ2sα|

- 
1

2
 ( )Sz(1) + Sz(2)   |1sα2sβ|

= 
1

2
 





h∼ 





-
1
2  + h∼ 



1

2   |1sβ2sα|

- 
1

2
 





h∼ 



1

2  + h∼ 





-
1
2   |1sα2sβ|

= 0h∼ 
1

2
 ( )|1sβ2sα| - |1sα2sβ|  

S2 
1

2
 ( )|1sβ2sα| - |1sα2sβ|   = (S-S+ + Sz2 + h∼ Sz)

1

2
 ( )|1sβ2sα| - |1sα2sβ|  

= S-S+ 
1

2
 ( )|1sβ2sα| - |1sα2sβ|  

= 
1

2( )S-(S+(1) + S+(2))|1sβ2sα| - S-(S+(1) + S+(2))|1sα2sβ|  

= 
1

2( )S- h∼ |1sα2sα| - S- h∼ |1sα2sα|  



144

= 0 h∼ 
1

2( )(S-(1) + S-(2))|1sα2sα|  

= 0 h∼ 
1

2( )h∼|1sβ2sα| - h∼|1sα2sβ|  

= 0 h∼ 2 
1

2( )|1sβ2sα| - |1sα2sβ|  

50.

As shown in problem 22c, for two equivalent π electrons one obtains six states:

1∆ (ML=2); one state (MS=0),

1∆ (ML=-2); one state (MS=0),

1Σ (ML=0); one state (MS=0), and

3Σ (ML=0); three states (MS=1,0, and -1).

By inspecting the "box" in problem 22c, it should be fairly straightforward to write down

the wavefunctions for each of these:

1∆ (ML=2); |π1απ1β|

1∆ (ML=-2); |π-1απ-1β|

1Σ (ML=0); 
1

2( )|π1βπ-1α| - |π1απ-1β|  

3Σ (ML=0, MS=1); |π1απ-1α|

3Σ (ML=0, MS=0); 
1

2( )|π1βπ-1α| + |π1απ-1β|  
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3Σ (ML=0, MS=-1); |π1βπ-1β|

51.

We can conveniently couple another s electron to the states generated from the 1s12s1

configuration:

3S(L=0, S=1) with 3s1(L=0, S=
1
2 ) giving:

L=0, S=
3
2  , 

1
2  ; 4S (4 states) and 2S (2 states).

1S(L=0, S=0) with 3s1(L=0, S=
1
2 ) giving:

L=0, S=
1
2  ; 2S (2 states).

Constructing a "box" for this case would yield:
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                                              ML

MS

0

3
2 

|1sα2sα3sα|

1
2 

|1sα2sα3sβ|, |1sα2sβ3sα|, |1sβ2sα3sα|

One can immediately identify the wavefunctions for two of the quartets (they are single

entries):

4S(S=
3
2 ,MS=

3
2 ): |1sα2sα3sα|

4S(S=
3
2 ,MS=-

3
2 ): |1sβ2sβ3sβ|

Applying S- to 4S(S=
3
2 ,MS=

3
2 ) yields:

S-4S(S=
3
2 ,MS=

3
2 ) = h∼ 

3
2(

3
2 + 1) - 

3
2(

3
2 - 1)  4S(S=

3
2 ,MS=

1
2 )

      = h∼ 3  4S(S=
3
2 ,MS=

1
2 )

S-|1sα2sα3sα| = h∼ ( )|1sβ2sα3sα| + |1sα2sβ3sα| + |1sα2sα3sβ|  

So, 4S(S=
3
2 ,MS=

1
2 ) = 

1

3
 ( )|1sβ2sα3sα| + |1sα2sβ3sα| + |1sα2sα3sβ|  

Applying S+ to 4S(S=
3
2 ,MS=-

3
2 ) yields:

S+4S(S=
3
2 ,MS=-

3
2 ) = h∼ 

3
2(

3
2 + 1) - -

3
2(-

3
2 + 1)  4S(S=

3
2 ,MS=-

1
2 )

      = h∼ 3  4S(S=
3
2 ,MS=-

1
2 )
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S+|1sβ2sβ3sβ| = h∼ ( )|1sα2sβ3sβ| + |1sβ2sα3sβ| + |1sβ2sβ3sα|  

So, 4S(S=
3
2 ,MS=-

1
2 ) = 

1

3
 ( )|1sα2sβ3sβ| + |1sβ2sα3sβ| + |1sβ2sβ3sα|  

It only remains to construct the doublet states which are orthogonal to these quartet

states.  Recall that the orthogonal combinations for systems having three equal

components (for example when symmetry adapting the 3 sp2 hybrids in C2v or D3h

symmetry) give results of + + +, +2 - -, and 0 + -.  Notice that the quartets are the + + +

combinations and therefore the doublets can be recognized as:

2S(S=
1
2 ,MS=

1
2 ) = 

1

6
 ( )|1sβ2sα3sα| + |1sα2sβ3sα| - 2|1sα2sα3sβ|  

2S(S=
1
2 ,MS=

1
2 ) = 

1

2
 ( )|1sβ2sα3sα| - |1sα2sβ3sα| + 0|1sα2sα3sβ|  

2S(S=
1
2 ,MS=-

1
2 ) = 

1

6
 ( )|1sα2sβ3sβ| + |1sβ2sα3sβ| - 2|1sβ2sβ3sα|  

2S(S=
1
2 ,MS=-

1
2 ) = 

1

3
 ( )|1sα2sβ3sβ| - |1sβ2sα3sβ| + 0|1sβ2sβ3sα|  

52.

As illustrated in problem 24, a p2 configuration (two equivalent p electrons) gives rise to

the term symbols: 3P, 1D, and 1S.  Coupling an additional electron (3d1) to this p2

configuration will give the desired 1s22s22p23d1 term symbols:

3P(L=1,S=1) with 2D(L=2,S=
1
2 ) generates;

L=3,2,1, and S=
3
2 , 

1
2  with term symbols 4F, 2F,4D, 2D,4P, and 2P,
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1D(L=2,S=0) with 2D(L=2,S=
1
2 ) generates;

L=4,3,2,1,0, and S=
1
2  with term symbols 2G, 2F, 2D, 2P, and 2S,

1S(L=0,S=0) with 2D(L=2,S=
1
2 ) generates;

L=2 and S=
1
2  with term symbol 2D.

53. The notation used for the Slater Condon rules will be as follows:

(a.) zero (spin orbital) difference;

< >|F + G|   = ∑
i

 < >φi|f|φi   + ∑
i>j

  < >φiφj|g|φiφj  - < >φiφj|g|φjφi  

        = ∑
i

fii  + ∑
i>j

 ( )gijij - gijji  

(b.) one (spin orbital) difference (φp ≠ φp');

< >|F + G|   = < >φp|f|φp'   + ∑
j≠p;p'

  < >φpφj|g|φp'φj  - < >φpφj|g|φjφp'  

        = fpp' + ∑
j≠p;p'

 ( )gpjp'j - gpjjp'  

(c.) two (spin orbital) differences (φp ≠ φp' and φq ≠ φq');

< >|F + G|   = < >φpφq|g|φp'φq'   - < >φpφq|g|φq'φp'  

        = gpqp'q' - gpqq'p'

(d.) three or more (spin orbital) differences;

< >|F + G|   = 0
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i. 3P(ML=1,MS=1) = |p1αp0α|

< >|p1αp0α|H|p1αp0α|   = <| 10| H | 10|>

  Using the Slater Condon rule (a.) above (I will denote these SCa-SCd):

< >|10|H|10|   = f11 + f00 + g1010 - g1001

ii. 3P(ML=0,MS=0) = 
1

2( )|p1αp-1β| + |p1βp-1α|  

< >3P(ML=0,MS=0)|H|3P(ML=0,MS=0)  

 = 
1
2(< >|p1αp-1β|H|p1αp-1β|  + < >|p1αp-1β|H|p1βp-1α|  

     + < >|p1βp-1α|H|p1αp-1β|   + < >|p1βp-1α|H|p1βp-1α|  )

Evaluating each matrix element gives:

< >|p1αp-1β|H|p1αp-1β|   = f1α1α + f-1β-1β + g1α-1β1α-1β - g1α-1β-1β1α (SCa)

= f11 + f-1-1 + g1-11-1 - 0

< >|p1αp-1β|H|p1βp-1α|   = g1α-1β1β-1α - g1α-1β-1α1β (SCc)

= 0 - g1-1-11

< >|p1βp-1α|H|p1αp-1β|   = g1β-1α1α-1β - g1β-1α-1β1α (SCc)

= 0 - g1-1-11

< >|p1βp-1α|H|p1βp-1α|   = f1β1β + f-1α-1α + g1β-1α1β-1α - g1β-1α-1α1β (SCa)
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= f11 + f-1-1 + g1-11-1 - 0

Substitution of these expressions give:

< >3P(ML=0,MS=0)|H|3P(ML=0,MS=0)  

 = 
1
2 (f11 + f-1-1 + g1-11-1 - g1-1-11 - g1-1-11 

 + f11 + f-1-1 + g1-11-1)

 = f11 + f-1-1 + g1-11-1 - g1-1-11

iii. 1S(ML=0,MS=0); 
1

3
(|p0αp0β| - |p1αp-1β| - |p-1αp1β|) 

< >1S(ML=0,MS=0)|H|1S(ML=0,MS=0)  

 = 
1
3(< >|p0αp0β|H|p0αp0β|  - < >|p0αp0β|H|p1αp-1β|  

     - < >|p0αp0β|H|p-1αp1β|   - < >|p1αp-1β|H|p0αp0β|  

     + < >|p1αp-1β|H|p1αp-1β|   + < >|p1αp-1β|H|p-1αp1β|  

     - < >|p-1αp1β|H|p0αp0β|   + < >|p-1αp1β|H|p1αp-1β|  

     + < >|p-1αp1β|H|p-1αp1β|  )

Evaluating each matrix element gives:

< >|p0αp0β|H|p0αp0β|   = f0α0α + f0β0β + g0α0β0α0β - g0α0β0β0α (SCa)

= f00 + f00 + g0000 - 0

< >|p0αp0β|H|p1αp-1β|   = < >|p1αp-1β|H|p0αp0β|  

= g0α0β1α-1β - g0α0β-1β1α (SCc)
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= g001-1 - 0

< >|p0αp0β|H|p-1αp1β|   = < >|p-1αp1β|H|p0αp0β|  

= g0α0β−1α1β - g0α0β1β−1α (SCc)

= g00-11 - 0

< >|p1αp-1β|H|p1αp-1β|   = f1α1α + f-1β-1β + g1α-1β1α-1β - g1α-1β-1β1α (SCa)

= f11 + f-1-1 + g1-11-1 - 0

< >|p1αp-1β|H|p-1αp1β|   = < >|p-1αp1β|H|p1αp-1β|  

= g1α-1β-1α1β - g1α-1β1β-1α (SCc)

= g1-1-11 - 0

< >|p-1αp1β|H|p-1αp1β|   = f-1α−1α + f1β1β + g-1α1β−1α1β - g-1α1β1β−1α (SCa)

= f-1-1 + f11 + g-11-11 - 0

Substitution of these expressions give:

< >1S(ML=0,MS=0)|H|1S(ML=0,MS=0)  

 = 
1
3(f00 + f00 + g0000 - g001-1 - g00-11 - g001-1 + f11 + f-1-1 

 + g1-11-1 + g1-1-11 - g00-11 + g1-1-11 + f-1-1 + f11 + g-11-11)

 = 
1
3(2f00 + 2f11 + 2f-1-1 + g0000 - 4g001-1 + 2g1-11-1 + 2g1-1-11) 

iv. 1D(ML=0,MS=0) = 
1

6( )2|p0αp0β| + |p1αp-1β| + |p-1αp1β|  
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Evaluating < >1D(ML=0,MS=0)|H|1D(ML=0,MS=0)   we note that all the Slater Condon

matrix elements generated are the same as those evaluated in part iii. (the signs for the

wavefunction components and the multiplicative factor of two for one of the components,

however, are different).

< >1D(ML=0,MS=0)|H|1D(ML=0,MS=0)  

 = 
1
6(4f00 + 4f00 + 4g0000 + 2g001-1 + 2g00-11 + 2g001-1 + f11 

 + f-1-1 + g1-11-1 + g1-1-11 + 2g00-11 + g1-1-11 + f-1-1 + f11

 + g-11-11)

 = 
1
6(8f00 + 2f11 + 2f-1-1 + 4g0000 + 8g001-1 + 2g1-11-1 + 2g1-1-11) 

54.

i. 1∆(ML=2,MS=0) = |π1απ1β|

< >1∆(ML=2,MS=0)|H|1∆(ML=2,MS=0)  

 = < >|π1απ1β|H|π1απ1β|  

 = f1α1α + f1β1β + g1α1β1α1β - g1α1β1β1α (SCa)

 = f11 + f11 + g1111 - 0

 = 2f11 + g1111
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ii. 1Σ(ML=0,MS=0) = 
1

2( )|π1απ-1β| - |π1βπ-1α|  

< >3Σ(ML=0,MS=0)|H|3Σ(ML=0,MS=0)  

 = 
1
2(< >|π1απ-1β|H|π1απ-1β|  - < >|π1απ-1β|H|π1βπ-1α|  

     - < >|π1βπ-1α|H|π1απ-1β|   + < >|π1βπ-1α|H|π1βπ-1α|  )

Evaluating each matrix element gives:

< >|π1απ-1β|H|π1απ-1β|   = f1α1α + f-1β-1β + g1α-1β1α-1β - g1α-1β-1β1α (SCa)

= f11 + f-1-1 + g1-11-1 - 0

< >|π1απ-1β|H|π1βπ-1α|   = g1α-1β1β-1α - g1α-1β-1α1β (SCc)

= 0 - g1-1-11

< >|π1βπ-1α|H|π1απ-1β|   = g1β-1α1α-1β - g1β-1α-1β1α (SCc)

= 0 - g1-1-11

< >|π1βπ-1α|H|π1βπ-1α|   = f1β1β + f-1α-1α + g1β-1α1β-1α - g1β-1α-1α1β (SCa)

= f11 + f-1-1 + g1-11-1 - 0

Substitution of these expressions give:

< >3Σ(ML=0,MS=0)|H|3Σ(ML=0,MS=0)  

 = 
1
2 (f11 + f-1-1 + g1-11-1+ g1-1-11+ g1-1-11 + f11 + f-1-1 + g1-11-1) 

 = f11 + f-1-1 + g1-11-1+ g1-1-11

iii. 3Σ(ML=0,MS=0) = 
1

2( )|π1απ-1β| + |π1βπ-1α|  
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< >3Σ(ML=0,MS=0)|H|3Σ(ML=0,MS=0)  

= f11 + f-1-1 + g1-11-1 - 0

< >|π1απ-1β|H|π1βπ-1α|   = g1α-1β1β-1α - g1α-1β-1α1β (SCc)

= 0 - g1-1-11

< >|π1βπ-1α|H|π1απ-1β|   = g1β-1α1α-1β - g1β-1α-1β1α (SCc)

= 0 - g1-1-11

< >|π1βπ-1α|H|π1βπ-1α|   = f1β1β + f-1α-1α + g1β-1α1β-1α - g1β-1α-1α1β (SCa)

= f11 + f-1-1 + g1-11-1 - 0

Substitution of these expressions give:

< >3Σ(ML=0,MS=0)|H|3Σ(ML=0,MS=0)  

 = 
1
2 (f11 + f-1-1 + g1-11-1- g1-1-11- g1-1-11 + f11 + f-1-1 + g1-11-1) 

 = f11 + f-1-1 + g1-11-1- g1-1-11

55.

The order of the answers is J, I, G. K, B, D, E, A, C, H, F

56.
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p = N/(V-Nb) – N2 a/(kTV2)

but p/kT = (∂lnQ/∂V)T,N

so we can integrate to obtain ln Q

lnQ = ∫ (p/kT) dV = ∫ [N/(V-Nb) – N2 a/(kTV2)] dV

= N ln(V-Nb) + N2a/kT (1/V)

So,

Q = {(V-Nb)exp[(a/kT) (N/V)]}N

57.

a.

MD because you need to keep track of how far the molecule moves as a function of time

and MC does not deal with time.

b.

MC is capable of doing this although MD is also. However, MC requires fewer

computational steps, so I would prefer to use it.
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c.

MC can do this, as could MD. Again, because MC needs fewer computational steps, I’d

use it.

Suppose you are carrying out a Monte-Carlo simulation involving 1000 Ar atoms.

Further suppose that the potentials are pairwise additive and that your computer requires

approximately 50 floating point operations (FPO's) (e.g. multiply, add, divide, etc.) to

compute the interaction potential between any pair of atoms

d.

For each MC move, we must compute only the change in potential energy. To do this, we

need to compute only the change in the pair energies that involve the atom that was

moved. This will require 999x50 FPOs (the 99 being  the number of atoms other than the

one that moved). So, for a million MC steps, I would need 106 x 999 x 50 FPOs. At 100

x106 FPOs per second, this will require 495 seconds, or a little over eight minutes.

e.
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Because the statistical fluctuations in MC calculations are proportional to (1/N)1/2, where

N is the number of steps taken, I will have to take 4 times as many steps to cut the

statistical errors in half. So, this will require 4 x 495 seconds or 1980 seconds.

f.

If we have one million rather than one thousand atoms, the 495 second calculation of part

d would require

999,999/999

times as much time. This ratio arises because the time to compute the change in potential

energy accompanying a MC move is proportional to the number of other atoms. So, the

calculation would take 495 x (999,999/999) seconds or about 500,000 seconds or about

140 hours.

g.

We would be taking 10-9s/(10-15 s per step) = 106 MD steps.

Each step requires that we compute all forces(-∂V∂RI,J) between all pairs of atoms. There

are 1000x999/2 such pairs. So, to compute all the forces would require

(1000x999/2)x 50 FPOs = 2.5 x107 FPOs. So, we will need
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2.5 x107 FPOs/step x 106 steps/(100 FPOs per second)

= 2.5 x105 seconds or about 70 hours.

h.

The graduate student is 108 times slower than the 100 Mflop computer, so it will take

her/him 108 times as long, so 495 x108 seconds or about 1570 years.

58.

First, Na has a 2S ground state term symbol whose degeneracy is 2S + 1 = 2.

Na2 has a 1Σ ground state whose degeneracy is 1.

The symmetry number for Na2 is σ = 2.

The D0 value given is 17.3 kcal mol-1.

The Kp equilibrium constant would be given in terms of partial pressures as (and then

using pV=NkT)

Kp = pNa
2/pNa2 = (kT)-1 (qNa/V)2/(qNa2/V)

in terms of the partition functions.
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a.

qNa = (2πmkT/h2)3/2 V qel

qNA2 = (2πm’kT/h2)3/2 V (8π2IkT/h2) 1/2 [ exp-hν/2kT) (1- exp-hν/kT))-1 exp(De/kT)

We can combine the De and the –hν/2kT to obtain the D0 which is what we were given.

b. For Na (I will use cgs units in all cases):

q/V = (2π 23 1.66x10-24 1.38 x10-16 1000)3/2 2

= (6.54 x1026) x 2 = 1.31 x1027

For Na2:

q/N = 23/2 x (6.54 x1026) (1000/0.221) (1/2) (1-exp(-229/1000))-1 exp(D0/kT)

= 1.85 x1027  (2.26 x103) (4.88) (5.96 x103)

= 1.22 x1035

So,

Kp = [1.22 x1035]/[(1.38 x10-16)(1000) (1.72 x1054)

= 0.50 x10-6 dynes cm-2 = 0.50 atm-1.
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59.

The differences in krate will arise from differences in the number of translational,

rotational, and vibrational partition functions arising in the adsorbed and gas-phase

species. Recall that

krate = (kT/h) exp(-E*/kT) [qTS/V]/[(qNO/V) (qCl2/V)]

In the gas phase,

NO has 3 translations, two rotations, and one vibration

Cl2 has 3 translations, two rotations, and one vibration

the NOCl2 TS, which is bent, has 3 translations, three rotations, and five vibrations (recall

that one vibration is missing and is the reaction coordinate)

In the adsorbed state,

NO has 2 translations, one rotation, and three vibrations

Cl2 has 2 translations, one rotation, and three vibrations

the NOCl2 TS, which is bent, has 2 translations, one rotation, and eight vibrations (again,

one vibration is missing and is the reaction coordinate).
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So, in computing the partition function ratio:

[qTS/V]/[(qNO/V) (qCl2/V)]

for the adsorbed and gas-phase cases, one does not obtain the same number of

translational, rotational, and vibrational factors. In particular, the ratio of these factors for

the adsorbed and gas-phase cases gives the ratio of rate constants as follows:

kad/kgas = (qtrans/V)/qvib

which should be of the order of 108 (using the ratio of partition functions as given).

Notice that this result suggests that reaction rates can be altered by constraining the

reacting species to move freely in lower dimensions even if one does not alter the

energetics (e.g., activation energy or thermochemistry).


