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    ABSTRACT    

Molecular anions possessing excess internal vibrational and/or rotational energy can

eject their “extra” electron through radiationless transitions involving non Born-

Oppenheimer coupling. In such processes, there is an interplay between the nuclear and

electronic motions that allows energy to be transferred from the former to the latter and that

permits momentum and/or angular momentum to also be transferred in a manner that

preserves total energy, momentum, and angular momentum. There are well established

quantum mechanical expressions for the rates of this kind of radiationless process, and

these expressions have been used successfully to compute electron ejection rates. In this

paper, we recast the state-to-state quantum rate equation into the time-domain and into a

form in which the departing electron tunnels through a radial potential. The time-domain

expressions are especially useful for polyatomic systems where the multidimensional time

correlation function decays to zero on a very short time scale. The tunneling framework is

more appropriate when the perturbative assumptions, upon which the time-domain

expressions are based, are questonable.
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I. Introduction

A. Relation to Experiments

Numerous specroscopy experiments have been carried out over a number of years

in the Lineberger1, Brauman2, and Beauchamp3 laboratories in which electronically stable

negative molecular ions prepared in excited vibrational-rotational states have been observed

to eject their “extra” electron. For the anions considered in those experiments, it is unlikely

that the anion and neutral-molecule potential energy surfaces undergo crossings at

geometries accessed by their vibrational motions. It is therefore believed that the mechanism

of electron ejection must involve vibration-rotation to electronic energy transfer in which

couplings between nuclear motions and electronic motions known as non Born-

Oppenheimer (BO) couplings cause the electron ejection rather than curve crossings in

which the anion’s energy surface intersects that of the neutral at some geometries.

In earlier works, we4 and others5 have formulated (within a first-order Fermi

“golden rule” perturbative framework6) and computed non BO coupling strengths for

several of the anion systems that have been studied experimentally including:

1. Dipole- bound anions5a,5b,4f in which the extra electron is attracted primarily by the dipole

force field of the polar molecule and for which rotation-to-electronic coupling is most

important in inducing electron ejection.

2. NH-  (X2Π) for which4d  vibration of the N-H bond couples only weakly to the non-

bonding 2pπ orbital and for which rotation-to-electronic coupling can be dominiant in

causing electron ejection for high rotational levels.

3. Enolate anions4e that have been “heated” by infrared multiple photon absorption for

which torsional motion about the H2C-C bond, which destabilizes the π orbital containing

the extra electron, is the mode contributing most to vibration-to-electronic energy transfer

and thus to ejection.
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Our calculations have been successful in interpreting trends that are seen in the

experimentally observed rates of electron ejection. However, in our opinion, there is a need

to extend the theoretical framework in two directions. First, the time-independent state-to-

state golden rule expressions used to date are too cumbersome for use in highly excited

polyatomic anions (containing N atoms); it is simply not feasible to compute the 3N-6-

dimensional vibrational wavefunctions at high internal energies. Secondly, a tool that does

not rely on the perturbative treatment upon which the golden rule expressions are based is

needed; this is essential whenever the non-BO couplings are not weak enough to be viewed

as weak perturbations.

It is the purpose of this paper to effect such extensions in the theoretical frameworks

by recasting the rate equations both (a) in the time-domain rather than state-to-state

expressions and (b) using a radial electron tunneling framework5 that does not require

perturbative assumptions.

B. Review of State-to-State Quantum Rate Expression

Within the Born-Oppenheimer approximation, the electronic Schrödinger equation

he (r|Q) ψκ(r|Q) = Ek(Q) ψk(r|Q) (1)

is solved to obtain electronic wavefunctions ψk(r|Q), which are functions of the molecule’s

electronic coordinates (collectively denoted r) and atomic coordinates (denoted Q), and the

corresponding electronic energies Ek(Q), which are functions of the Q coordinates. The

electronic Hamiltonian

he(r|Q) = Σ i {-   h2
/2me ∇i

2 +1/2 Σ j ≠i  e
2/ri,j  - Σa Za  e

2 /ri,a }+ 1/2 Σa≠b  Za Zb  e
2/Ra,b (2)
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contains, respectively, the sum of the kinetic energies of the electrons, the electron-electron

repulsion, the electron-nuclear Coulomb attraction, and the nuclear-nuclear repulsion

energy.

The rate R (sec-1) of transition from a Born-Oppenheimer initial state Ψi = ψi χi  (ψi

is the anion electronic function and χi  is the anion vibration/rotation function) to a final state

Ψf  = ψf χf  (ψf  and χf  are the neutral plus ejected electron electronic and vibration/rotation

functions) is given, via first-order perturbation theory4,6, as:

R = (2π/  h ) ∫ |<χi| <ψi  |P| ψf >(P/µ)χf >|2 δ(εf  + E - εi ) ρ(E) dE.  (3)

Here, εi,f  are the vibration-rotation energies of the initial (anion) and final (neutral)

vibration-rotation states (χi  and χf , respectively), and E is the kinetic energy carried away

by the ejected electron (e.g., the initial state corresponds to an anion and the final state to a

neutral molecule plus an ejected electron). The density ρ of translational energy states of the

ejected electron is related to the kinetic energy by ρ(E) = 4πmeL
3(2meE)1/2/   h2

. Here and

elsewhere, we use the short-hand notation Pψ Pχ/µ to symbolize the action of the

multidimensional derivative operators arising in the non BO couplings:

(Pψf  )(P/µχf ) = Σa (-i   h ∂ψf/∂Ra)(-i   h ∂χf/∂Ra)/ma , (4)

where Ra runs over the cartesian coordinates (Xa, Ya , Za ) of the ath atom whose mass is ma.

It should be noted that the energy conserving δ(εf  + E - εi ) appearing in Eq.(3) does

    not    imply a crossing between the anion and neutral energy surfaces Ei(Q) and Ef(Q),
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respectively. For all of the anions discussed in this paper, the anion’s electronic energy

Ei(Q) lies below the neutral’s electronic energy Ef(Q) for all geometries Q accessed  by

vibrational/rotational motion of the anion. However, because the anion has “excess”

vibrational and/or rotational energy, its    total    energy εi  exceeds the total energy εf  of the

(vibrationally/rotationally) colder neutral. As a result, the    total    energy conservation

condition δ(εf  + E - εi ) can be fulfilled when the ejected electron carries away the excess

energy E as its asymptotic kinetic energy.

C. The Electronic Non BO Matrix Elements

The integrals over the anion and neutral-plus-free-electron electronic states

mi,f = <ψf  |P| ψi> (5)

are known to be large in magnitude only under special circumstances:

1. The orbital of the anion from which an electron is ejected to form the state ψf  of the

neutral (usually the anion’s highest occupied molecular orbital (HOMO)) must     be strongly

     modulated     or affected by movement of the molecule in one or more directions (Q). That is,

∂ψi/∂Q, which appears in Pψi , must be significant or the above integral will be small.

2. The state-to-state energy gap, εi - εf , which is equal to the kinetic energy E of the ejected

electron, must not be too large; otherwise, the spatial oscillations in the ejected electron’s

wavefunction ψf  will be so rapid as to render overlap with ∂ψi/∂Q negligible again making

the above integral small.
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Moreover, symmetry can cause mi,f = <ψf  |P| ψi> to vanish if the direct product of the

symmetry of ψi  and of ∂/∂Q do not match that of ψf . Viewed another way, the direct

product of the HOMO’s  symmetry and the symmetry of the vibration or rotation coordinate

(Q) from which energy is transferred determines the symmetry of the ejected electron’s

continuum orbital which, in turn, determines the angular distribution of the ejected electron.

The derivatives (i.e., the dynamic responses) of the anion’s orbitals to nuclear

motions ∂ψi/∂Q arise from two sources:

1. An orbital’s LCAO-MO coefficients depend on the positions of the atoms (or,

equivalently,  on the anion’s bond lengths and internal angles). For example, the π* orbital

of an olefin anion that contains the “extra” electron is affected by stretching or twisting the

C-C bond involving this orbital because the LCAO-MO coefficients depend on the bond

length and twist angle. As the bond stretches or twists, the π* orbital’s LCAO-MO

coefficients vary, as a result of which the orbital’s energy, radial extent, and other

properties also vary.

2. The atomic orbitals (AOs, which are denoted χµ) themselves dynamically respond to the

motions of the atomic centers. These dynamical responses occur in ∂ψ/∂Q as ∂χµ/∂Q,

which can be evaluated using the same analytical derivative methods that have made

computation of potential energy gradients and Hessians powerful tools in quantum

chemistry. For example, vibration of the X2Π NH- anion’s N-H bond induces dπ character

into the 2pπ orbital containing the extra electron as shown in Fig. 1, because the radial

derivative of a px orbital, ∂pz/∂R, produces a function of dxz symmetry.  Alternatively,

rotation of this anion’s N-H bond axis causes the 2pπ  HOMO to acquire some 2pσ character

because ∂px/∂θ contains terms of pz character (see Fig. 1 for a pictorial explanation).
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Further insight into how the LCAO-MO coefficients vary with geometry can be

achieved by way of the Hellmann-Feynman theorem in the form:

<ψf |-i   h ∂he/∂Q|ψi >/(Ei -Ef  -E)  = <ψf |-i   h ∂/∂Q|ψi > =  <ψf  |P| ψi> = mi,f . (6)

One sees that the electronic non-BO matrix elements will be enhanced at geometries where

the anion and neutral potential surfaces approach closely. Note that this requirement (of

small Ei - Ef ) meaning that the energy surfaces are close says nothing about the anion-to-

neutral state-to-state energy gap εi -εf , which determines the kinetic energy E carried away

by the electron. Enhancement is also effected when the initial and final states have a strong

matrix element of the “force operator” ∂he/∂Q. The latter is effectively a     one-electron    

operator involving derivatives of the electron-nuclear Coulomb attraction potential  Σ i Σa  Za

e2 /ri,a, so the matrix element <ψf |∂he/∂Q|ψi > can be visualized as <φf |∂he/∂Q|φi >, where φi

is the anion’s HOMO and φf is the continuum orbital of the ejected electron. At geometries

where the anion-neutral energy surfaces are far removed, the denominator in Eq.(6) will

attenuate the coupling. If the state-to-state energy difference εi - εf  = E accompaning the

electron ejection is large, the integral <φf |∂he/∂Q|φi > will be small because the continuum

orbital φf  will be highly oscillatory and thus will not overlap well with (∂he/∂Q )φi.

In summary, for non BO coupling to be significant4 the    anion’s HOMO must be

   strongly modulated     by a motion (vibration or rotation) of the molecule’s nuclear framework

and    the state-to-state energy gap must not be too large    as to render the HOMO-to-

continuum-orbital overlap insignificant. For the HOMO to be strongly modulated, it is

helpful if    the anion and neutral energy surfaces approach closely     at some accessible

geometries.
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It should be emphasized that it is necessary but not sufficient for Ef(Q) - Ei(Q) to be

small over an appreciable range of geometries; this only guarantees that the denominator in

Eq. (6) is small. It is also necessary that Ef(Q) - Ei(Q) decrease at a significant rate as the

point of closest approach is reached; this is why we say the surfaces must approach

closely. If Ef(Q) - Ei(Q) were small yet unvarying over some range of geometries, then the

HOMO’s electron binding energy (and thus radial extent) would remain unchanged over

this range of geometries. In such a case, movement along Q would not      modulate    the

HOMO, and thus ∂ψi/∂Q would vanish.  Let us consider a few examples to further

illustrate.

D. A Few Examples

In Fig. 2 are depicted anion  and neutral potential curves that are qualitatively

illustrative of1b,4d the X2Π NH-  case mentioned earlier. In this anion, the HOMO is a non-

bonding 2pπ orbital localized almost entirely on the N atom. As such, its LCAO-MO

coefficients are not strongly affected by vibration of the N-H bond (because it is a non-

bonding orbital). Moreover, the anion and neutral surfaces have nearly identical Re  and ωe

values, and similar De  values, as a result of which these two surfaces are nearly parallel to

one another over a wide range of internuclear distances and are separated by ca. 0.4 eV or

more than 3000 cm-1 at their minima.  It has been seen experimentally that excitation of NH-

to the low rotational states of the v=1 vibrational level (which lies above v=0 NH of the

neutral and thus has enough energy to eject the electron) results in very slow (e.g., ca. 108

sec-1) electron ejection, corresponding to one million vibrational periods before detachment

occurs. However, excitation to high rotational levels (e.g., J = 40) of v=1 produces much

more rapid electron ejection ( 109 -1010 sec-1). These data have been interpreted as saying
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that vibrational coupling is weak (i.e., ∂ψi/∂R is small) because of the non-bonding nature

of the 2pπ MO, while rotational coupling becomes significant  (i.e.,∂ψi/∂θ large) for high J.

In Fig. 3 are shown anion and neutral potential curves, as functions of the “twist”

angle of the H2C-C bond in a typical enolate anion2, 4e such as acetaldehyde enolate

H2CCHO- . Angles near θ =0 correspond to geometries where the pπ orbital of the H2C

moiety is delocalized over the two pπ orbitals of the neighboring C and O atoms, thus

forming a delocalized π HOMO. At angles near θ = 90° , the pπ orbital of the H2C group is

no longer stabilized by delocalization; so the HOMO’s energy is much higher. In this case,

excitation of, for example, v=7 in the H2C-C torsional mode of the anion might be expected

to produce electron ejection because v=7 of the anion lies above v = 0 of the neutral.

However, over the range of θ values accessible to both the v=7 vibrational function of the

anion and the v=0 function of the neutral, the anion-neutrral energy-surface gap is quite

large (i.e., Ef (Q) - Ei(Q) is large even though εi -εf  is small). In contrast, excitation of  v=9

of the anion could produce more rapid electron ejection (to v=2 of the neutral, but not to

v=0 of the neutral) because for the v=9 → v=2 transition there are angles accessed by both

v=9 anion and v=2 neutral vibrational functions for which Ef(Q) - Ei(Q) is small and

changing; moreover, the state-to-state gap εi -εf  is also small in this case.

II.Time Correlation Function Expression for Rates

1. Time Domain Expression for Electron Ejection Rates

We begin with the 6,4g Wentzel-Fermi “golden rule” expression given in Eq. (3) for

the transition rate between electronic states ψi,f  and corresponding vibration-rotation states
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χi,f  appropriate to the non BO case. We recall that εi,f  are the vibration-rotation energies of

the molecule in the anion and neutral molecule states, E denotes the kinetic energy carried

away by the ejected electron, and the density of translational energy states of the ejected

electron is ρ(E). Also recall that we use the short hand notation to symbolize the

multidimensional derivative operators that embody the momentum-exchange between the

vibration/rotation and electronic degrees of freedom:

(Pψf  )(P/µχf ) = Σa (-i   h ∂ψf/∂Ra) (-i   h ∂χf/∂Ra)/ma , (4)

where Ra is one of the cartesian coordinates (Xa, Ya , Za ) of the ath atom whose mass is ma.

In the event that some subset {Qi} of internal vibration or rotation coordinates have

been identified as inducing the radiationless transition, (Pψf  )(P/µχf ) would represent

Σ j (-i   h ∂ψf/∂Qj) (-i   h ∂χf/∂Qj)/(µj), where µϕ is the reduced mass associated with the

coordinate Qj. It is usually straightforward to identify which distortional modes need to be

considered by noting which modes most strongly      modulate the anion’s HOMO    . So, for the

remainder of this work, we will assume that such active modes have been identified as a

result of which the sum Σ j (-i   h ∂ψf/∂Qj) (-i   h ∂χf/∂Qj)/(µj) will include only these modes.

The integration over all of the other vibration/rotation coordinates contained in the matrix

element  <χi| <ψi  |P| ψf >(P/µ)χf > can then be carried out (assuming the electronic element

<ψi  |P| ψf > to not depend significantly on these coordinates) to produce an effective

Franck-Condon like factor (FC) for these inactive:

<χi| <ψi  |P| ψf >(P/µ)χf > = Πj=inactive ∫dQj <χi,j |χf,j> Πj=active ∫ dQj  <χi,j| <ψi  |P| ψf >(P/µ)χf ,j>
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= FC Πj=active ∫ dQj  <χi,j| <ψi  |P| ψf >(P/µ)χf ,j>. (7)

Since, by assumption, the anion and neutral molecule do not differ significantly in their

geometries (and vibrational frequencies) along the coordinates contributing to the FC factor

(otherwise, the anion-neutral energy gap would depend substantially on these modes), the

FC factor is probably close to unity in magnitude.  Hence, for the remainder of this paper,

we will focus only on the active-mode part of this expression, and will do so assuming

only one such mode is operative (i.e., we treat one active mode at a time).

Recalling the definition of the electronic coupling matrix element mi,f = <ψf  |P| ψi>,

and realizing that P is a Hermitian operator, allows the non-BO rate R to be rewritten as:

R = (2π/  h ) ∫ <(P/µ)χi| mi,f *|χf>
 <χf | mi,f  (P/µ)χi>

  δ(εf  + E - εi ) ρ(E) dE. (8)

If the Fourier integral representation of the delta function is introduced and the sum over all

possible final-state vibration-rotation states {χf} is carried out, the    total    rate RT  can be

expressed as:

RT  = (2π/  h ) Σ f ∫ (1/2πh) ∫ exp[it(εf  - εi +E)/  h ]

<(P/µ)χi| mi,f *|χf>
 <χf | mi,f  (P/µ)χi>

 dt ρ(E) dE. (9)

Using  (εf + E) <χf| = <χf | (T + Vf +E), (εi )| χi > = |(T + Vi ) χi>, and Σ f |χf><χf | =1, gives

RT  = (2π/  h ) ∫ (1/2π  h ) ∫ ρ(E) <mi,f (P/µ) exp(-it(T + Vi)/  h ) χi |

exp(-it(T + Vf)/  h ) mi,f  (P/µ)χi>
 dt exp(-itE/  h ) dE. (10)
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In this form, the rate expression looks much like that given for the photon

absorption rate given in many sources7, but with mi,f (P/µ) replacing the molecule-photon

electronic transition matrix element µi,f.. That is, RT  is given as the     Fourier transform of the

    overlap of two time propagated functions    Fi  and F2:

(a) F1 is the initial vibration-rotation state χi upon which the non BO perturbation mi,f  (P/µ)

acts after which propagation on the     neutral    molecule’s potential surface Vf  is effected via

exp(-it( T + Vf)/  h ).

(b) F2  is the initial function χi  propagated on the anion’s surface Vi via exp(-it( T + Vi)/  h )

(producing, of course, exp(-itεi/  h ) χi) after which the perturbation mi,f (P/µ) is allowed to

act. The time correlation function <F2 | F1> is then Fourier transformed at energy E = εi -εf,

and multiplied by the density of states ρ(E) appropriate to the electron ejected with kinetic

energy E.

2. Electron Ejection is Not Closely Analogous to Photon Emission

It is tempting to conclude that the process of electron ejection induced by non-BO

coupling can be viewed as very similar to photon emission. However, such is not at all the

case, as we now illustrate (also consult Fig. 4). The rate of photon emission from an

excited state with energy εi  to a final state with energy εf  is expressed in many sources6,7

as:

R = (2π/  h )|<ψi χi |V| ψf χf >|2 δ(εf  - εi +   h ω). (11)
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Introducing the electronic dipole transition matrix element µi,f  = <ψf |V|ψi > and using

identities analogous to those employed above to move from the state-to-state to the time

domain, this rate expression can be reduced to

RT =  (2π/  h ) (1/2π  h ) ∫ exp[-it ω]   < µi,f  exp(-ithi /  h ) χi | exp(-ithf/  h ) µi,f | χi > dt (12)

which is the photon-emission analog of Eq. (10).

If one makes the (classical) assumption that the nuclear-motion kinetic energy

operator T commutes with Vi,f  and with mi,f  in the non-BO case and with µi,f in the photon

case, the time integrations can be carried out, and the following expressions are obtained

from Eqs. (10) and (12):

RT  = (2π/  h ) ∫ ρ(E) <mi,f (P/µ)  χi | δ(Vf + E- Vi) mi,f  (P/µ)χi>
 dE. (10a)

RT  = (2π/  h ) <µi,f  χi | δ(Vf +   h ω - Vi)| µi,f  χi>. (12a)

For anions that are electronically bound, the anion’s electronic energy Vi (Q) lies     below      the

neurtral molecule’s electronic energy Vf (Q) as depicted in Figs. 2-4. As a result, Vf(Q) -

Vi(Q) is positive at all geoemtries, and because E is also a positive quantity, there are no

values of Q for which the argument of the delta function in Eq. (10a) vanishes. In contrast,

in the photon emission case, the final (ground) state surface Vf(Q) lies below the initial

(excited) state surface Vi(Q), so Vf -Vi  is a negative quantity. Therefore, values of (the

positive)   h ω can be found for which the argument of the delta function in Eq. (12a)

vanishes.

The fact that the simplest (purely classical) picture of the electron ejection and

photon emission events produce entirely different results (the former predicts a vanishing
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rate, the latter does not) indicates that these two processes are not analogous. The essential

difference lies in how the total electronic energy changes in the two events:

(a) In photon emission, a positive energy photon is ejected, and the system moves from a

state of higher electronic energy to a state of lower electronic energy. The vibration/rotation

energy is altered only in a secondary way (i.e., because the forces experienced on the nuclei

changes once the electronic state changes).

(b) In the electron ejection case, a positive energy electron is ejected, but the system moves

from a state of    lower    electronic energy (the anion) to a state of     higher    electronic energy (the

neutral). The vibration/rotation energy plays an    essential    role because its depletion provides

the energy (and momentum) that allows the electronic energy to    increase   .

3. When is the Time-Domain Expression Useful?

The rate expressions given in Eqs. (3) and (10) are formally identical. However, the

practical implementation of Eq. (10) will be favorable when one is treating polyatomic

molecules, and, especially, if one can identify specific geometries (Q*) near which the

electronic non-BO matrix elements mi,f  are most strongly focused. Examples of two such

situations are shown in Fig. 5. In these cases, the initial (t=0) wavefunction mi,f  (P/µ)χi> to

be propagated on the final (neutral) energy surface will be localized to those regions (Q*)

where mi,f  is localized. The other time-evolved function entering into the correlation

function of Eq. (10) is mi,f  (P/µ)exp(-it(T + Vi)/  h ) χi , which is equal to exp(-it(εf/  h ) mi,f

(P/µ)χi ; this function is also spatially localized because mi,f  is. As a result of this

localization, the time correlation function
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C(t)  = exp(itεf/  h ) <mi,f (P/µ) χi | exp(-it(T + Vf)/  h ) mi,f  (P/µ)χi>  (13)

will rapidly (i.e., on a time scale of the molecular vibrations that are most important in

promoting the non-BO coupling) decay to zero. C(t) will display non-zero values again at

later times as the time evolving function  exp(-it(T + Vf)/  h ) mi,f  (P/µ)χi> returns to near

where it started at t=0. However, especially in polyatomic anions, these recurrences will

contribute little amplitude to C(t) because of rapid dephasing along each of the 3N-6

vibrational modes.

Because of the rapid decay of C(t) and because of the availability of efficient tools8,9

for handling short-time quantum wavefunction propagation even in mulitdimensional

systems, the time-dependent prescription given in Eq. (10) will be favored over the state-to-

state time-independent Eq. (3) when treating polyatomic anions. However, both Eqs. (3)

and (10) are based on a perturbative treatment of the non-BO coupling and, thus, are

expected to be restricted to cases where the perturbation is weak as reflected in the fact that

the rate of electron ejection is orders of magnitude slower than rates of vibrations or

rotations. For the examples discussed earlier (e.g., NH- , enolates, etc.), it was indeed the

case that electron ejection rates were much slower than even rotations, so the golden rule

perturbative approach could be used.

However, there are species for which the electron is so weakly bound (and thus the

separation in time scales between rotation/vibration motion and electronic motions is not

large) that a perturbative approach likely will not work. We now turn our attention to a

framework that allows such extreme cases to be more adequately addressed.

III. The Tunneling View of Electron Ejection

When considering anions with very weakly bound (e.g., 1-100 cm-1) electrons, it

may be more appropriate to reverse the conventional assumption of fast moving electrons



16

and slow moving nuclei as postulated in the BO approximation. In particular, in such

systems, it is useful to introduce potential energy surfaces that describe the interaction of an

electron (at a fixed location r, θ, φ) with a neutral molecule whose geometry is averaged

over its vibrational motion. Let us proceed to explore this role-reversed point of view.

 The following Hamiltonian is used5 to describe the neutral molecule (whose

vibrational and orientational coordinates are collectively denoted Q) and the “extra” electron

(whose spatial coordinates are r,θ,φ) and the interaction potential V between the electron

and the neutral:

 H = h(Q) + L
2
(θ,φ) r -2/2me + V(r,Q) -   h2

r -2 /2me{ ∂/∂r(r2 ∂/∂r) } (14)

The electronic (n), vibrational (v), and rotational10  (J,M) eigenstates {ψn,v,J,M} of the neutral

are solutions of the Schrödinger equation for which h(Q) is the Hamiltonian:

h(Q) ψn,v,J, M = En,v,J,M ψn,v,J, M, (15)

and the En,v,J,M  are the electronic/vibrational/rotational energy levels of the neutral molecule.

To generate a series of “diabatic” energy surfaces that describe the potential energy

of interaction of the extra electron with the neutral molecule    averaged     over the internal

(electronic, vibrational, and rotational) motions of the neutral, we evaluate the diagonal

elements of the Hamiltonian that contains all terms in Eq. (14) except the radial motion of

the extra electron H’ = h(Q) + L
2 
(θ,φ)/2me r

-2 + V(r,Q) within a basis {Ψa,l,m,n,v,J,M =  Yl,m

(θa,φa) ψn,v,J, M (Q)} consisting of products of neutral molecule functions ψn,v,J, M (Q) and

angular functions Yl,m  for the extra electron  (relative to each atomic center a in the

molecule).
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In this product basis, the     diagonal elements    of the Hamiltonian H’ are labeled by the

quantum numbers of the neutral molecule (n, v, J, M) as well as by the atomic center (a)

and electronic angular momentum quantum numbers l,m,  and are given by:

Hn,v,J,M,a ,l,m=  En,v,J,M +   h2
l(l+1)/2me ra

-2

+ ∫ | Yl,m (θa,φa)|
2  |ψn,v,J, M (Q)|2 V(ra,θa,φa,Q) dQ sinθa dθa dφa   (16)

For notational simplicity in describing how these diagonal elements and the off diagonal

elements discussed below couple to generate diabatic energy surfaces, we use a single

index (v) to represent the neutral-molecule quantum numbers (n, v, J, M). Each neutral

molecule level with product wavefunction Ψv,a,l,m is coupled through V(Q,r) to other levels

Ψv,a’,l’,m’ as reflected in the off-diagonal elements of this same Hamiltonian:

Hv,a,l,m,v’,a’,l’,m’ = ∫ Ψv,a,l,m* V(Q,r,θ,φ) Ψv’,a’,l’,m’  dQ sinθ dθ dφ . (17)

 Both the diagonal and off-diagonal matrix elements remain functions of r, the radial

distance of the extra electron from the neutral molecule.

The nature and strength of the coupling elements Hv,l,m,v’,a’,l’,m’ is governed by how V

depends on (a) the angular location of the extra electron θa, φa relative to the atomic centers

a, (b) the distance of the extra electron ra from these centers, (c) the variation of V along the

3N-6 internal vibrational modes of the neutral. The latter dependence is often represented in

terms of a series expansion of V about some reference geometry (Q0) (usually some

equilibrium geometry):

V(Q,r) = V(Q0,r) + Σk=1,3N-6 (∂V/∂Qk)(r) (Qk-Qk
0)

+ Σk,m (∂
2V/∂Qk∂Qm)(r) (Qk -Qk

0) (Qm -Qm
0) + ... (18)
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The characteristics of V described above in (a) and (b) allow V to couple basis states

belonging to the    same    neutral molecule level (n, v, J, M) but having different atomic centers

a and different angular dependence l, m to produce what we will call     diabatic    states (for

reasons made clear later). Let us consider an example to illustrate such couplings. In Fig. 6

are shown the conventional Born-Oppenheimer energy surfaces for a typical alkali halide

(LiX) and its anion in which the extra electron is bound to the positive end of the polar LiX

molecule in an orbital consisting primarily of s and pσ  atomic orbitals on the Li center. This

bound orbital results from the coupling of l=0, m=0 and l=1, m=0 basis orbitals located

primarily on the Li atom. Also shown in Fig. 6 is the anion orbital of a typical enolate. This

orbital results from coupling l=1 orbitals (having m = 0 with the z-axis directed

perpendicular to the molecular plane) on the left C, middle C, and O centers. In terms of the

diabatic states discussed above, these orbitals are solutions F(r) to a radial Schrödinger

equation

-   h2
/2mer-2 { ∂/∂r(r2 ∂/∂r) F}+ Ediabatic(r) F = ε F (19)

where Ediabatic(r) is the attractive diabatic potential obtained by coupling basis states having

indentical n,v,J,M quantum numbers but different a, l, m values, and ε is the orbital energy

of the HOMO orbital(s) shown in Fig. 6.

Because it is rare for a neutral molecule to support more than one bound anion state

(i.e., to have more than one bound virtual orbital), the effects discussed in (a) and (b) most

commonly will couple basis states having common n, v, J, M quantum numbers to produce

only one attractive diabatic potential plus a family of repulsive potentials. Each of the

repulsive surfaces can be labeled by an l quantum number because, at large electron-

molecule distances, these surfaces vary with r as l(l+1)  h  2/2mer
2.  This situation is
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illustrated in Fig. 7 where the single attractive and many repulsive surfaces are shown for

one n,v,J,M level.

The above discussion covered how V(Q,r) couples basis states with different a, l,

m but with identical n, v, J, M (i.e., all states derived from a given state of the neutral

molecule). However, V also couples states having different n, v, J, M quantum numbers;

in fact, it is only through such interactions that transitions among various internal states of

the neutral occur and, hence, energy flows to the extra electron. It is by way of these

interactions that the diabatic curves discussed in the preceeding two paragraphs evolve into

adiabatic curves that we detail further below.

The strength of the coupling to various internal states depends on the magnitudes of

the derivatives appearing in Eq. (18). For example, in the LiX systems, radial vibrational

motion modulates the anion’s HOMO most strongly, so ∂V/∂R is the dominant term in the

expansion of Eq. (18). In the enolate cases, twisting motion (θ) of the R2C group is the

primary source of HOMO modulation, so ∂V/∂θ is largest. If a dominant motion can be

identified as in these two examples, then one can approximate the effect of V in terms of a

single contribution (∂V/∂Q) (Q-Q0) to first order. Such terms can be expected to give rise to

couplings between internal states of the neutral which differ (by unity, within the harmonic

approximation) in their quantum numbers that label that motion (Q) which dominates

∂V/∂Q. Again considering the LiX and enolate cases, states with different bond stretching

(LiX) or torsional (enolate) vibrational quantum numbers should experience the most

important couplings.

In Fig. 8 are shown the    families of diabatic curves    (one attractive and numerous

repulsive for each v level of the neutral) appropriate for the LiX case where radial

vibrational motion dominates. The attractive diabatic curve that connects, at large r, to the

vth  level of LiX undergoes crossings with various repulsive diabatic curves connecting to

v-1, v-2, and v-3 of LiX. Because (∂V/∂R) (R-R0) is linear in the bond length

displacement, within a harmonic treatment, (a) those crossings of diabatic curves whose v
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quantum numbers differ by one will be coupled and (b) those crossings whose v quantum

numbes differ by 2 or more will not be coupled. As a result, the attractive curve of the vth

level will interact (to undergo an    avoided crossing    ) at the left-most dot in Fig. 8 to acquire

v-1 character (simultaneously causing the electronic function to acquire more l=1 character).

At larger r, near the second dot, this evolving    adiabatic curve    will acquire v-2 character (and

the electron will gain l=2 nature), and so forth until at the last dot, the v-3 character is

gained (as the electron gains even higher l dependence). It is through this sequence of

avoided crossings that (a) the     diabatic curves generate an adiabatic curve    through which the

extra electron must tunnel radially, (b) the vibrational energy decreases from v, to v-1, v-2,

and v-3 while the electron gains energy (and angular momentum) as it detaches.

To determine the rate of electron ejection from the anion (diabatic) level having

quantum numbers n,v,J,M (represented by the single quantum number v in Fig. 8), one

must solve for the rate at which tunneling occurs on the corresponding adiabatic curve by

solving the Schrödinger equation

-   h2
/2mer-2 {∂/∂r(r2 ∂/∂r)}F(r) + V(r) F(r)= ε-

v F(r) (20)

where V(r) is the adiabatic curve (shown as the evolving red/yellow/blue/fucia curve in Fig.

8). The  energy ε-
v  is found by solving the bound-state radial Schrödinger equation in

which V(r) is the corresponding attractive diabatic potential (shown in red in Fig. 8).

   In practice   , the (red)     diabatic surface    can be found, using conventional quantum

chemistry tools, as follows:

1. One obtains the anion’s (bound) HOMO ψ(r,θ,φ) and its orbital energy ε− as well as the

neutral molecule’s occupied molecular orbitals {ψj}using conventional BO quantum

chemistry. These orbitals are expressed as expansions (e.g., for the HOMO: ψ(r,θ,φ) =

Σa,l,m,j Ca,l,m,j Yl,m(θa,φa) Ra,j(ra)) in terms of angular and radial basis functions centered on the
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various atoms (a). Of course, the LCAO-MO coefficients and the orbital energies depend on

the geometry (Q) at which this calculation is performed.

2. One can next define an electron-molecule interaction potential V(Q,r) in terms of the

Coulomb-minus-exchange potential generated by the neutral’s occupied orbitals {ψj} plus

the Coulomb attraction potential of the underlying neutral’s nuclei:

 V(Q,r) = Σa {-Zae
2/|r-Rz|} + Σ j  ∫ ψj(r’)* e2/|r-r’| (1-Pr,r’) ψj(r’) dr’. (21)

3. The diabatic surface V(r) appropriate to the neutral molecule in a    specified    internal state

(n,v,J,M) is obtained from V(Q,r) by (a) averaging over the Q coordinates using the

square of the neutral’s vibration/rotation wavefunction ψn,v,J, M (Q) as the weighting factor,

(b) averaging over the extra electron’s angular coordinates θ,φ using |ψ(r,θ,φ)|2  as the

weighting, and (c) adding in the electronic angular kinetic energy (i.e., the centrifugal

potential) for the extra electron occupying ψ:

V(r) = ∫ |ψ(r,θ,φ)|2 | ψn,v,J, M (Q) |2 V(Q,r,θ,φ) dQ sinθ dθ dφ

+ 1/(2mer
2) ∫ ψ*L2ψsinθ dθ dφ  (22)

Because the HOMO ψ(r,θ,φ) has been obtained by mixing basis functions on all centers

and with various l, m values, it explicitly contains all of the couplings among basis states

with fixed n, v, J, M but with various a, l, and m quantum numbers. It is this V(r) function

that the red curve in Fig. 8 represents; it is the potential that the extra electron experiences as

the nuclei in the molecule undego their motions if there were no couplings between the

internal (i.e., electronic, vibrational, rotational) energy of the molecule and of the extra

electron.
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The    adiabatic curve    derived from each such diabatic curve can be approximated by

finding where the (red) diabatic curve (computed as detailed above) belonging to a given

internal level (e.g., the level denoted v in Fig. 8) intersects the first repulsive diabatic curve

connecting to the nearest lying lower level (e.g., that denoted v-1 in Fig. 8). This first

repulsive curve can be approximated in terms of the asymptotic energy of the underlying (v-

1 in Fig. 8) neutral level plus the extra electron’s centrifugal potential corresponding to l=1:

Ev-1 + 1(1+1)   h2
/2me ra

-2, and where it crosses the (red) diabatic curve can easily be

determined. Likewise, the location of the second crossing (the second dot in Fig. 8) can be

estimated by finding where Ev-1 + 1(1+1)   h2
/2me ra

-2  and Ev-2 +  2.(2+1)   h2
/2me ra

-2

intersect. In this manner, it is possible to “piece together” a description of the

red/yellow/blue/fucia adiabatic curve by following the red diabatic curve until the first dot,

moving to the yellow curve until the second dot, then on to the blue curve until the third

dot, and, finally, on to the fucia curve (Ev-3 +  3.(3+1)   h2
/2me ra

-2 ) from then on.

The rate of electron ejection is then obtained by computing the radial tunneling rate

on the red/yellow/blue/fucia curve at an energy ε-
v obtained by solving the Schrödinger

equation (Eq. (20)) for the radial motion of the extra electron on the red diabatic curve. It is

through this process that one can evaluate5 electron ejection rates in terms of tunneling. As

stated earlier, this framework is especially useful when the extra electron is so weakly

attached that it makes sense to reverse the conventional separtion of electronic and nuclear

motion time scales.

IV. Summary

The rate of ejection of electrons from anions induced by non BO couplings can be

expressed rigorously and quantum mechanically as a Fourier transform of an overlap

function between two functions
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RT  = (2π/  h ) ∫ (1/2π  h ) ∫ ρ(E) <mi,f (P/µ) exp(-it(T + Vi)/  h ) χi |

exp(-it(T + Vf)/  h ) mi,f  (P/µ)χi>
 dt exp(-itE/  h ) dE. (10)

one of which is the anion vibration-rotation function χi  acted on by the non BO perturbation

mi,f (P/µ) and then propagated on the     neutral    molecule surface, the other being the initial χi

propagated on the anion surface and then acted on by mi,f (P/µ). In computer applications

involving polyatomic anions, it is especially efficient to compute RT   in this manner using

short-time quantum wave function propagation techniques.

For an anion having a very weakly bound extra electron, it can prove more fruitful

to evaluate the rate of non-BO induced electron detachment in terms of the radial tunneling

of this electron through an adiabatic potential. This approach arises when one reverses the

conventional BO assumption of fast electrons and slow nuclei and introduces families of

diabatic radial potentials (for each electronic, vibrational, rotational level of the daughter

neutral molecule) that are coupled by the electron-molecule interaction potential to generate

adiabatic radial potentials through which the electron tunnels.
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Figure Captions

Figure 1. Orbital response of NH- ‘s 2pπ orbital to (a) vibrtation of the N-H bond (left) and
(b) rotation of the N-H bond (right).

Figure 2. Anion (lower) and neutral (upper) potential energy surfaces illustrative of NH-

where the surface spacing does not vary strongly along R.

Figure 3. Anion (lower) and neutral (upper) potential energy surfaces illustrative of enolate
cases where the surface spacing varies strongly along the H2C-C torsion angle θ and

becomes very small near θ = 90°.

Figure 4. (a) Ground (lowest) and excited (upper) potential energy surfaces arising in the
photon emission case. (b) Anion (lower) and neutral (upper) potential energy surfaces for
the electron ejection case.

Figure 5. Two illustrations of how the electronic non-BO matrix element mi,f  tends to be
largest at geometries where the anion and neutral surfaces approach closely.

Figure 6. Anion and neutral energy curves (top) representative of the alkali halide species
together with a depiction of the anion HOMO of such LiX species (bottom left) and of the
anion HOMO of an enolate (bottom right).

Figure 7. Family of one attractive and many repulsive curves generated for each n,v,J,M
neutral molecule level by coupling various a,l,m values. Couplings that arise in alkali halide
(bottom left) and enolate (bottom right) cases.

Figure 8. Families of attractive and repulsive curves arising from neutral molecule levels v,
v-1, v-2, and v-3 showing the crossings of repulsive curves from lower v levels with
attractive curves from higher v levels. For the anion level labeled v, the crossings indicated
by dots show how the attractive diabatic curve (connecting to the neutral level v) acquires v-
1, v-2, and v-3 components as r increases.
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N H

dΨ/dR = (Ψ(R+δ) - Ψ(R))/δ
causes 2px to acquire dxz 
character

N H

dΨ/dθ = (Ψ(θ+δ) - Ψ(θ))/
causes 2px to acquire 2pz 
character
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