Doorway mechanism for Dissociative Electron attachment

Thomas Sommerfeld
Southeastern Louisiana University
Hammond, LA
Doorway mechanism for Dissociative Electron attachment

Outline

• Dissociative Electron attachment

• Doorway mechanism for electron capture

• Electron-induced Water-loss from Fructose
Dissociative electron attachment

\[\text{resonance} \]

stable radical anion
Doorway mechanism

Dipole-bound state
EA ≈ 100 meV
non-bonding

Valence state
resonance $E_r \approx 1$-3 eV
anti-bonding
Dipole-bound vs Valence States
Doorway mechanism

Step #1
Electron attachment into dipole-bound state

Step #2
Electron transfer to the valence state
On the binding of electrons to nitromethane: Dipole and valence bound anions

R. N. Comptona) and H. S. Carman, Jr.
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, Tennessee 37831-6125

C. Desfrancois, H. Abdoul-Carmine, and J. P. Schermann
Université Paris-Nord, Institut Galilée/Laboratoire de Physique des Lasers/Unité de Recherche, Associée au CNRS-URA 282, 93439 Villetaneuse, France

J. H. Hendricks, S. A. Lyapustina, and K. H. Bowen
Johns Hopkins University, Department of Chemistry, Charles and 34th Streets, Baltimore, Maryland 21218

(Received 28 December 1995; accepted 9 May 1996)

Doorway Step #1
Capture into a dipole-bound state

Free electron attachment close to threshold
→ vibrational Feshbach resonance

Rydberg electron transfer
→ stable anion
Doorway Step #2
Coupling with a valence state

Ab initio:
- Two states
- Balance
- Metastable region

\[
\hat{V} = \begin{pmatrix} V_{DB} & W \\ W & V_{val} \end{pmatrix}
\]

\[W \approx 20 - 30 \text{ meV}\]
Dissociative electron attachment to furan, tetrahydrofuran, and fructose

Philipp Sulzer, Sylwia Ptasinska, Fabio Zappa, Brygida Mielewska, Alexander R. Milosavljevic, Paul Scheier, and Tilmann D. Märk
Institut für Ionenphysik and Angewandte Physik, Leopold-Franzens-Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Germany and Center of Molecular Biosciences Innsbruck, Leopold-Franzens-Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Germany

Ilko Bald, Sascha Gohlke, Michael A. Huels, and Eugen Illenberger
Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany

(Received 7 March 2006; accepted 19 June 2006; published online 25 July 2006)
Fructose Primer

Pyranose

Chain

Furanose

0 kcal/mol

7 kcal/mol

3 kcal/mol
Doorway DEA to Fructose?

- Dipole-bound state
- Valence state below the neutral
- Coupling
- Water loss from the valence anion
Dipole-bound states

Dipole moment: 4 D
Electron binding energy: 5 meV
Valence attachment to Fructose

$\text{VDE} = 1.71 \text{ eV}$
$\text{ADE} = 0.36 \text{ eV}$

H-loss several eV uphill
Doorway DEA to Fructose

Pyranose → Dipole bound state

- From Pyranose the reaction energy is -4.5 kcal/mol
- The water elimination step from the chain anion is endothermic (2.5 kcal/mol)