Mechanisms for peptide S-S and N- C_{α} bond cleavage in ECD/ETD mass spectroscopy-Anions in Disguise

> Jack Simons University of Utah

Funding: NSF Analytical and Surface Chemistry My main collaborators: P. Skurski, M. Sobczyk, D.Neff <u>http://simons.hec.utah.edu</u> for references

How does ECD (or ETD) fragment peptides? McLafferty and Zubarev (Cornell) suggested the following:

This requires the + site to be close to the carbonly group or S-S so the H atom can "find" the C=O π bond or S-S σ bond.

What is the evidence against the Cornell mechanism?

Marshall Group ECD of doubly charged disulfide-linked dimers $(AcCA_NK+H)_2^{2+}$ and $(AcCA_NK+Na)_2^{2+}$ produced S-S bond cleavage when N = 10, 15, or 20 (distance between SS bond and + sites = 15, 24, 33 Å).

Positively Charged Lysine Positively

1. How does the H atom "find" the S-S bond so far away?

2. Na atoms don't attack and cleave S-S bonds, so how does $(AcCA_NK+Na)_2^{2+}$ cleave?

3. Why does only limited (the 4 amino acids closest to each Lys) N-C_{α} cleavage occur in (AcCA_NK+H)₂²⁺ ?

We suggested that an electron could attach (or transfer) exothermically to an OCN π^* (or SS σ^*) orbital if there were enough Coulomb stabilization at the π^* or σ^* site. Ca. 2.5 eV for the π^* , ca.

Our mechanism does not require the + site to be as close (e.g., within H-bonding) as in the Cornell mechanism.

So, our Coulomb model predicts that S_rS cleavage will occur as long as $R < 2x14.4eV\text{\AA}/1eV = 29$ Å. Pretty much as observed. It also says that N-C_{\alpha} cleavage can occur within 14.4eVÅ/2.5eV = 6 Å of the termini. Also, much as observed.

Coulomb stabilization = 14.4eV/R(Å)

Key questions:

1. Does it make sense that an electron can exothermically attach to to an OCN π^* or S-S σ^* orbital?

2. Does the electron not "**prefer**" to attach to the positive $-NH_3^+$ site?

3. Can the electron attach to the + site and then **transfer** to the OCN or SS bond site?

Answers: Yes, Yes, Yes but it depends on the distances.

Where can an e⁻ attach and then what happens? S-S bond attachment case.

Does an electron not "prefer" to bind to the + site?

Key questions:

1. Does it make sense that an electron can exothermically attach to to an OCN π^* or S-S σ^* orbital? Yes, if there are positive charges in proximity. $\sqrt{}$

2. Does the electron not "**prefer**" to attach to the positive $-NH_3^+$ site? Yes, by a couple of orders of magnitude. $\sqrt{}$

3. Can the electron attach to the + site and then **transfer** to the OCN or SS bond site?

Can an electron attach at the + site and then "transfer" through-bonds to a π^* or σ^* site?

The H_{1,2} couplings are small (10-1000 cm⁻¹) and decrease so rapidly with the distance R between the + and π^* or σ^* sites that transfer occurs only over 4-5 bonds.

As expected, the $H_{1,2}$ couplings fall off exponentially with distance.

This rapid decay is what limits through-bond transfer to 4-5 bonds.

Conclusions:

Electrons can attach either to + sites or, via Coulomb stabilization, to SS σ^* or OCN π^* sites.

In the latter cases, subsequent cleavage of the SS σ bond is prompt; cleavage of the N-C_{α} bond has a barrier of ca. 30 kcal mol⁻¹.

Electrons are more likely to attach at a + site, but then they can transfer only over ca. 4-5 bonds to reach an S-S or amide site.

Recently, McLuckey studied S-S cleavage using ETD on peptides containing protonated sites and fixed-charge sites

Their data suggested that transfer from charged sites to the S-S bond or among charged sites may occur.

So, what do we conclude?

Electrons can attach either to + sites or, via Coulomb stabilization, to SS σ^* or OCN π^* sites. In the former case, the Cornell path can occur if the + site is within hydrogen bonding distance. Subsequent cleavage of the SS σ bond is prompt; cleavage of the N-C_{α} bond has a barrier of ca. 30 kcal mol⁻¹.

Electrons are more likely to attach at a + site, but then they can through-bond transfer only over ca. 4-5 bonds to end up on a π^* or σ^* site.

Electrons can attach to a + site and undergo through-space transfer to an S-S bond but only if the + site comes within 5 Å of the S-S bond.

Electrons attached to one + site are slow to transfer to another + site of different character.