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1. INTRODUCTION

Ionization energies and electron affinities are among the most often
sought thermochemical data. The importance of electron binding ener-
gies is reflected by their presence in a variety of thermodynamic argu-
ments, including thermochemical cycles of acidity and basicity, complex-
ation energies, and oxidation-reduction reactions. Many spectroscopic
methods founded on the photoelectric effect, mass spectrometry, electron
scattering, and other techniques measure ionization energies and electron
affinities. The precision of these experiments in measuring transition en-
ergies often contrasts with the paucity of information they generate on
accompanying molecular and ionic structures. Computational means of
estimating ionization energies and electron affinities therefore provide
indispensable corroborative information on structures, especially as the
scope of thermochemical and spectroscopic measurements expands.

Given the ubiquitous character of molecular orbital concepts in
contemporary discourse on electronic structure, ionization energies and
electron affinities provide valuable parameters for one-electron models
of chemical bonding and spectra. Electron binding energies may be as-
signed to delocalized molecular orbitals and thereby provide measures of
chemical reactivity. Notions of hardness and softness, electronegativity,
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and other qualitative concepts often appeal to molecular orbitals and
their corresponding energies.

While many experimental techniques and the majority of computa-
tional strategies focus on the generation of increasingly precise ionization
energies and electron affinities, fewer methods emphasize the connection
between these electron binding energies and the changes in electronic
structure they represent. Because one-electron concepts have a history
of generating powerful ordering principles for the formulation of hypothe-
ses about electronic structure, it is desirable to use theoretical techniques
that show how to connect electron binding energies to orbitals.

2. ELECTRON PROPAGATOR CONCEPTS

Electron propagator theory [1-11] provides a conceptual and com-
putational foundation for this path of inquiry. First, this theory, which
is also known as one-electron Green’s function theory or as the equation-
of-motion method, provides a rigorous framework for calculations of ion-
ization energies and electron affinities. Second, to each electron binding
energy εp, electron propagator theory associates a function of the coor-
dinates of a single electron φp(x). Both of these objects are results of
solving a pseudoeigenvalue problem,

Ĥeffφp(x) = εp φp(x) . (2.1)

A special case of this approach is represented by the Hartree-Fock
equations, where the effective operator Ĥeff contains the usual kinetic
(T̂), nuclear attraction (Û), Coulomb (Ĵ), and exchange (K̂) components
such that

Ĥeff = F̂ = T̂ + Û + Ĵ − K̂ . (2.2)

Since the Ĵ and K̂ operators depend on the occupied orbitals, the pseu-
doeigenvalue problem must be solved iteratively until consistency is
achieved between orbitals that determine Ĵ and K̂ and those that emerge
as eigenfunctions of Ĥeff , which in this approximation is known as the
Fock operator F̂.

Electron propagator formalism allows for generalizations that in-
clude the effects of correlation. Here the pseudoeigenvalue problem has
the following structure

[

F̂ + Σ̂(εp)
]

φp(x) = εp φp(x) . (2.3)

Now the Fock operator is supplemented by the self-energy operator Σ̂(E).
This operator depends on an energy parameter E and is nonlocal. All
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orbital relaxation effects between initial and final states may be included
in the self-energy operator, as well as all differences in the correlation
energies of these states. As in the Hartree-Fock case, matrix elements of
the Fock operator still depend on the charge-bond order density matrix
D (also known as the one-electron density matrix) according to

Frs = Trs + Urs +
∑

tu

〈rt||su〉Dtu , (2.4)

but D may pertain to a correlated reference state. The energy depen-
dence of the correlated effective operator Ĥeff , where

Ĥeff(E) = F̂ + Σ̂(E) , (2.5)

indicates that the correlated pseudoeigenvalue problem must also con-
tain iterations with respect to E. A search for electron binding energies
requires that a guess energy be inserted into Ĥeff(E), leading to new

eigenvalues which may be reinserted into Ĥeff(E) in a cyclic manner
until consistency is obtained between the operator and its eigenvalues.
Approximations to Σ̂(E) may be systematically extended until, in prin-
ciple, exact ionization energies and electron affinities emerge as {εp}
values.

Eigenfunctions that accompany these eigenvalues have a clear phys-
ical meaning that corresponds to electron attachment or detachment.
These functions are known as Dyson orbitals, Feynman-Dyson ampli-
tudes, or generalized overlap amplitudes. For ionization energies, they
are given by

φp(x1) = N1/2
∫

ΨN(x1,x2,x3, . . . ,xN)Ψ∗

N−1,p(x2,x3,x4, . . . ,xN)

× dx2dx3dx4 . . . dxN , (2.6)

where xi is the space-spin coordinate of electron i. The Dyson orbital
corresponding to the energy difference between the N-electron state ΨN

and the p-th electron-detached state ΨN−1,p may be used to calculate
cross sections for various types of photoionization and electron scat-
tering processes. For example, photoionization intensities {Ip} may be
determined via

Ip = κ |〈φp|∇χ〉|2 , (2.7)

where χ is a description of the ejected photoelectron. For electron affini-
ties, the formula for the Dyson orbital reads

φp(x1) = (N + 1)1/2
∫

ΨN+1,p(x1,x2,x3, . . . ,xN,xN+1)

× Ψ∗

N(x2,x3,x4, . . . ,xN,xN+1)

× dx2dx3dx4 . . . dxNdxN+1 . (2.8)
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In the Hartree-Fock, frozen-orbital case, the reference state con-
sists of a single determinant of spinorbitals and the final states differ
by the addition or subtraction of an electron in a canonical spinorbital.
The overlaps between states of unequal numbers of electrons represented
by the Dyson orbital formulae reduce to occupied or virtual orbitals
which are solutions of the canonical Hartree-Fock equations. Dyson
orbitals may also be obtained from configuration interaction wavefunc-
tions. Electron propagator calculations, however, avoid the evaluation
of complicated many-electron wavefunctions (and their energies) in fa-
vor of direct evaluation of electron binding energies and their associated
Dyson orbitals. Note that for correlated calculations, the Dyson orbitals
are not necessarily normalized. The pole strength P is given by

Pp =

∫

|φp(x)|2 dx . (2.9)

In the Hartree-Fock, frozen-orbital case, Pp acquires its maximum
value, unity. Final states with large correlation effects are characterized
by low pole strengths. Transition intensities, such as those in Eq. (2.7),
are proportional to Pp.

3. AN ECONOMICAL APPROXIMATION: P3

Canonical Hartree-Fock orbital energies are a convenient and pow-
erful foundation for estimating the smallest vertical electron binding
energies of closed-shell molecules. This approximation, which is based
on Koopmans’s theorem, is the most often used method for assigning the
lowest peaks in photoelectron spectra. However, there are many classes
of important molecules for which the Koopmans approximation fails to
predict the correct order of final states. Average errors made by this
frozen-orbital, uncorrelated method are between 1 and 2 eV for valence
ionization energies. More confident assignments require that these errors
be reduced.

Perturbative expressions for the self-energy operator can achieve
this goal for large, closed-shell molecules. In this review, we will con-
centrate on an approximation developed for this purpose, the partial
third-order, or P3, approximation. P3 calculations have been carried
out for a variety of molecules. A tabulation of these calculations is given
in Table 5.1.

The original derivation of the P3 method was accompanied by test
calculations on challenging, but small, closed-shell molecules with vari-
ous basis sets [12]. The average absolute error was approximately 0.2 eV
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Table 5.1 Recent applications of the P3 method.

Reference molecule or ion Year Ref.

borazine 1996 12
azabenzenes 1996 13
dichlorobenzene 1996 14
anthracene, phenanthrene, and naphthacene 1996 15
chlorobenzene 1996 16
sym-tetrazine 1997 17
carbon quadranions 1997 18
small anions 1997 19
acridine, phenazine, and diazaphenanthrene 1997 20
benzopyrenes 1997 21
C2−

7 1998 22
anisole and thioanisole 1998 23
butadiene 1999 24
uracil and adenine 2000 25
naphthalene 2000 26
guanine 2000 27
dicarboxylate dianions 2000 28
double-Rydberg anions 2000 29

for vertical ionization energies below 20 eV. Since 1996, the P3 method
has been applied chiefly to the ionization energies of organic molecules.
For nitrogen-containing heterocycles, P3 corrections to Koopmans re-
sults are essential in making assignments of photoelectron spectra. Cor-
relation corrections generally are much larger for hole states with large
contributions from nonbonding, nitrogen-centered functions than for de-
localized π levels. Therefore, P3 results often produce a different or-
dering of the cationic states. The accuracy of P3 predictions generally
suffices to make reliable assignments. Several reviews on electron propa-
gator theory have discussed relationships between P3 and other methods
[9-11].

The P3 method is generally implemented in the diagonal self-energy
approximation. Here, off-diagonal elements of the self-energy matrix
in the canonical, Hartree-Fock orbital basis are set to zero. In the P3
approximation, correlation contributions to the Fock matrix (also known
as the energy-independent, or constant, part of the self-energy matrix)
are ignored. The pseudoeigenvalue problem therefore reduces to separate
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equations for each canonical, Hartree-Fock orbital:

Fpp + Σpp(E) = E (3.1)

or

εHF
p + Σpp(E) = E. (3.2)

Only energy iterations are needed in the diagonal self-energy approxima-
tion. For example, Σpp(E) may be evaluated at E = εHF

p to obtain a new
guess for E. The latter value is reinserted into Σpp(E) and the process
continues until consecutive energy guesses agree to within 0.01 µEh of
each other. Alternatively, one may use Newton’s method for solving the
roots of a complicated function such that

E − εHF
p − Σpp(E) = 0. (3.3)

This procedure requires analytical expressions for Σpp(E) and its deriva-
tive with respect to E; it usually converges in three iterations. Neglect
of off-diagonal elements of the self-energy matrix also implies that the
corresponding Dyson orbital is given by

φp(x) = P1/2
p φHF

p (x) , (3.4)

where the pole strength Pp is determined by

Pp =

[

1 −
dΣpp(E)

dE

]

−1

. (3.5)

In the latter expression, the derivative is evaluated at the converged
energy. Diagonal self-energy approximations therefore subject a frozen
Hartree-Fock orbital φHF

p (x) to an energy-dependent correlation poten-
tial Σpp(E).

Diagonal matrix elements of the P3 self-energy approximation may
be expressed in terms of canonical Hartree-Fock orbital energies and
electron repulsion integrals in this basis. For ionization energies, where
the index p pertains to an occupied spinorbital in the Hartree-Fock de-
terminant,

ΣP3
pp(E) =

1

2

∑

iab

〈pi||ab〉〈ab||pi〉

E + εi − εa − εb
+

1

2

∑

aij

Wpaij 〈pa||ij〉

E + εa − εi − εj

+
1

2

∑

aij

Upaij(E) 〈ij||pa〉

E + εa − εi − εj
, (3.6)
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where

Wpaij = 〈pa||ij〉 +
1

2

∑

bc

〈pa||bc〉〈bc||ij〉

εi + εj − εb − εc

+ (1 − Pij)
∑

bk

〈pk||bi〉〈ba||jk〉

εj + εk − εa − εb
(3.7)

and

Upaij(E) = −
1

2

∑

kl

〈pa||kl〉〈kl||ij〉

E + εa − εk − εl

− (1 − Pij)
∑

bk

〈pb||jk〉〈ak||bi〉

E + εb − εj − εk
. (3.8)

Indices i, j, k, ... (a, b, c, ...) refer to occupied (virtual) spinorbitals.
Each of the terms in Eq. (3.6) may be interpreted in terms of simple
concepts. The first term pertains to pair correlation energies in the
reference state that are missing in the final state due to removal of an
electron from the occupied spinorbital p. Summing these terms over all
occupied p and setting E = εp for each term would recover the second-
order, perturbative correction to the Hartree-Fock total energy of the
reference state. The remaining terms account for orbital relaxation and
electron correlation in the final state. When either the i or j indices are
equal to p, orbital relaxation is described by excitations of electrons into
the now vacant, but previously (that is, in the reference determinant)
occupied spinorbital p. To describe electron correlation in the final state
in terms of spinorbitals optimized for the reference state, it is crucial
to include the second and third terms of Eq. (3.7) as well the terms
involving the U intermediates of Eq. (3.8). Note that these terms are
second-order in electron interaction and therefore generate third-order
terms in the self-energy matrix.

For each ionization energy of index p, evaluation of W elements
requires arithmetic operations with an O2V3 scaling factor, where O
is the number of occupied spinorbitals and V is the number of virtual
spinorbitals. For each value of E, the U elements must be reevaluated,
but the scaling factor here is only O3V2. Since V is generally much larger
than O, the latter steps proceed relatively quickly. A complete set of
transformed two-electron integrals is not needed, for the set where all
four indices are virtual does not appear in these equations. The largest
set of integrals, with one occupied and three virtual indices, is needed
only in the first summation of Eq. (3.7). Efficient programs may avoid
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the evaluation and storage of these transformed integrals by performing
this summation with semidirect algorithms [30].

For electron affinities, where the index p pertains to a virtual spinor-
bital,

ΣP3
pp(E) =

1

2

∑

aij

〈pa||ij〉〈ij||pa〉

E + εa − εi − εj
+

1

2

∑

iab

Wpiab 〈pi||ab〉

E + εi − εa − εb

+
1

2

∑

iab

Upiab(E) 〈ab||pi〉

E + εi − εa − εb
, (3.9)

where

Wpiab = 〈pi||ab〉 +
1

2

∑

jk

〈pi||jk〉〈jk||ab〉

εj + εk − εa − εb

+ (1 − Pab)
∑

jc

〈pc||ja〉〈ji||bc〉

εi + εj − εb − εc
(3.10)

and

Upiab(E) =
1

2

∑

cd

〈pi||cd〉〈cd||ab〉

E + εi − εc − εd
+ (1 − Pab)

∑

jc

〈pj||bc〉〈ic||ja〉

E + εj − εb − εc
.

(3.11)
These formulae are similar to those for the ionization energy case, but
with the roles of occupied and virtual indices being reversed. Interpreta-
tion of the terms proceeds in an analogous manner. The first summation
in Eq. (3.11) now dominates the arithmetic and storage requirements of
the calculation. Its scaling factor is OV4 and it requires electron repul-
sion integrals with four virtual indices. Practical calculations generally
require a semidirect algorithm for this step.

4. OTHER DIAGONAL APPROXIMATIONS

All second-order terms are retained in the P3 self-energy formulae
for ionization energies and electron affinities. There are no differences
between the expressions used for ionization energies and electron affini-
ties in the second-order self-energy, which reads

Σ(2)
pp (E) =

1

2

∑

aij

〈pa||ij〉〈ij||pa〉

E + εa − εi − εj
+

1

2

∑

iab

〈pi||ab〉〈ab||pi〉

E + εi − εa − εb
(4.1)
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for all p. Diagonal, second-order calculations generally overestimate the
exact correlation correction to the Hartree-Fock orbital energy. The
absolute values of the ensuing errors are often as large as those of Koop-
mans’s theorem [31].

More satisfactory results are obtained from full third-order calcu-
lations [32, 33]. Diagonal elements of the full third-order, self-energy
matrix are given by

Σ(3)
pp (E) =

∑

aij

[

Wpaij + 1
2Upaij(E)

]

〈pa||ij〉

E + εa − εi − εj

+
∑

iab

[

Wpiab + 1
2Upiab(E)

]

〈pi||ab〉

E + εi − εa − εb

+ Σ(3)
pp (∞) . (4.2)

Terms containing the W intermediates no longer contain a factor of
1
2 . The energy-independent, third-order term, Σ

(3)
pp (∞), is a Coulomb-

exchange matrix element determined by second-order corrections to the
density matrix, where

Σ(3)
pp (∞) =

∑

rs

〈pr||ps〉D(2)
rs . (4.3)

Third-order results for closed-shell molecules have average absolute er-
rors of 0.6 - 0.7 eV [31]. Transformed integrals with four virtual indices
and OV4 contractions for each value of E are required for the U interme-
diate, which is needed for ionization energy as well as electron affinity
calculations.

Second-order and third-order results often bracket the true correc-
tion to {εHF

p }. Three schemes that scale the third-order terms in various
ways are known as the Outer Valence Green’s Function (OVGF) [8]. In
OVGF calculations, one of these three recipes is chosen as the recom-
mended one according to rules based on numerical criteria. These crite-
ria involve quantities that are derived from ratios of various constituent
terms of the self-energy matrix elements. Average absolute errors for
closed-shell molecules are somewhat larger than for P3 [31].
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5. NONDIAGONAL APPROXIMATIONS

For many ionization energies and electron affinities, diagonal self-
energy approximations are inappropriate. Methods with nondiagonal
self-energies allow Dyson orbitals to be written as linear combinations of
reference-state orbitals. In most of these approximations, combinations
of canonical, Hartree-Fock orbitals are used for this purpose, i.e.

φDyson
p (x) =

∑

q

Cpq φHF
q (x) . (5.1)

For normalized Hartree-Fock orbitals, the pole strength reads

Pp =
∑

q

|Cpq|
2 . (5.2)

Nondiagonal self-energy approximations are usually renormalized in the
sense that they contains terms in all orders of electron interaction. For
example, the 2p-h Tamm-Dancoff approximation (2ph-TDA) is suit-
able for qualitative descriptions of correlation (shake-up) final states in
inner-valence photoelectron spectra [34]. An extension of this method,
known as the third-order algebraic diagrammatic construction [ADC(3)]
includes all third-order terms in the self-energy matrix. While it re-
tains the ability of 2ph-TDA to generate a simple description of correla-
tion states, ADC(3) is competitive with OVGF in describing final states
where the Koopmans picture is qualitatively valid [8]. A nondiagonal,
renormalized extension of the P3 method that retains all second-order,
self-energy terms is known as NR2 [35]. For valence ionization energies
of closed-shell molecules, NR2 is somewhat more accurate than P3, but
it is also applicable to final states with large correlation effects [26, 36].
One pays for the enhanced versatility of these methods with increased
arithmetic and storage requirements. The relatively modest demands
of NR2 calculations make this approximation an attractive target for
algorithmic improvements.

It is also possible to employ highly correlated reference states as an
alternative to methods that employ Hartree-Fock orbitals. Multiconfigu-
rational, spin-tensor, electron propagator theory adopts multiconfigura-
tional, self-consistent-field reference states [37]. Perturbative corrections
to these reference states have been introduced recently [38].

Another approach of this kind uses the approximate Brueckner or-
bitals from a so-called Brueckner doubles, coupled-cluster calculation
[39, 40]. Methods of this kind are distinguished by their versatility and
have been applied to valence ionization energies of closed-shell molecules,
electron detachment energies of highly correlated anions, core ionization
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Figure 5.1 The keto form of 9-methylguanine.

energies, and photoelectron spectra of molecules with biradical character
[39-43].

6. AN EXAMPLE OF APPLICATION OF P3:

9–METHYLGUANINE

Closed-shell organic molecules are ideal candidates for study with
the P3 method for ionization energies. Because of their central position
in genetic material as constituents of base pairs, purines and pyrimidines
are especially important. The photoelectron spectrum of the purine 9-
methylguanine is calculated here as an example of the capabilities of P3
methodology.

Tables 5.2 and 5.3 display vertical ionization energies of the two
tautomers (keto and enol) with the lowest energies. The keto form is
shown in Fig. 5.1. In the enol form, a proton is transferred from ni-
trogen 1 to the oxygen atom. P3 ionization energies for both isomers
are close to the lowest peak in the photoelectron spectrum (PES) [44].
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Table 5.2 Ionization energies (eV) of the keto tautomer of 9-methylguanine.

MO KT P3 PESa

π1 8.01 7.98 8.02
π2 10.57 9.68 9.6
σ+(N,O) 11.59 9.68 9.6
σ−(N,O) 11.93 9.91 10.3
π3 11.64 10.39 10.3
π4 12.44 11.03 10.86
σ−N 13.30 11.34 11.32
π5 14.75 13.14 13.3

a Ref. 44.

Table 5.3 Ionization energies (eV) of the enol tautomer of 9-methylguanine.

MO KT P3 PESa

π1 8.08 8.05 8.02
π2 10.18 9.36 9.6
σN 11.26 9.55 9.6
π3 11.75 10.43 10.3
σN+ 12.38 10.46 10.3
π4 11.88 10.68 10.86
σN 13.72 11.71 11.32
π5 14.87 13.31 13.3

a Ref. 44.

Dyson orbitals in Figs. 5.2 and 5.3 are distributed similarly in the two
tautomers.

A more intense peak at 9.6 eV has several constituent ionization
energies corresponding to σ and π holes. Large redistributions of the cor-
responding Dyson orbitals preserve phase relationships and nodal struc-
ture in the π2 case. The structure of the lowest σ Dyson orbital is
preserved between the two tautomers, except for the suppression of the
nonbonding lobes on nitrogen 1 or on the oxygen, the positions where
the shifting proton may reside. For the feature at 10.3 eV, which has
an intensity comparable to the one at 9.6 eV, combinations of σ and π

holes also pertain. The order of the π3 and the second σ hole states
changes between the two isomers. There are substantial changes in the
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Figure 5.2 Dyson orbitals of the keto form of 9-methylguanine.
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Figure 5.3 Dyson orbitals of the enol form of 9-methylguanine.
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Dyson orbitals from one isomer to the other. A higher peak at 10.86 eV,
with intensity closer to that of the first one, is assigned to the π4 hole;
the Dyson orbital is approximately conserved after the proton transfer.
Note that Koopmans’s theorem (KT) results predict the wrong order of
states for the enol form. A third σ hole for both isomers is in reasonable
agreement with the experimental peak at 11.32 eV. Finally, the feature
at 13.3 eV is assigned to the π5 hole.

The quality of results obtained with the P3/6-311G** model is gen-
erally sufficient to assign outer valence photoelectron spectra of typical
organic molecules. Only 1s core orbitals are omitted from the self-energy
summations of Eq. (3.6). Pole strengths between 0.85 and 0.89 for all
states listed here confirm the perturbative arguments on which P3 is
based. This kind of calculation can be executed with the standard ver-
sion of Gaussian 98 [45] by activating certain input keywords [46].

In general, correlation corrections are larger for σ holes than for π

holes. It is not unusual for these differential correlation effects to change
the predicted order of final states. Heterocyclic organic molecules with
nitrogen-centered, nonbonding electrons are not alone in this respect.
Organometallics, transition metal complexes, and clusters of metal ox-
ides and metal halides also require this kind of theoretical interpretation.

7. P3 TEST RESULTS

The P3 approximation to the self-energy was applied to the atoms
Li through Kr and to neutral and ionic molecular species from the G2
set [47]. For the atoms, a set of 22 representative basis sets was tested.
Results for the molecular set were obtained using standard Pople basis
sets as described below.

Calculations of ionization energies and electron affinities were per-
formed with a modified development version of Gaussian 99 [48]. Pople
and Effective Core Potential (ECP) basis sets are provided in this soft-
ware [49]. Dunning and Atomic Natural Orbital (ANO) basis sets were
obtained from the EMSL Gaussian Basis Set Library [50].

7.1. Atomic Ionization Energies

Atomic calculations are an excellent way to investigate the strengths
and weaknesses of a computational procedure’s ability to account for
electron correlation. Because of the small size of the systems, calcula-
tions are sensitive to the theoretical treatment, especially the basis set.
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Table 5.4 4sn3dm electron configurations of transition metal atoms.

Atom Configuration Multiplicity

Sc [Ar] 4s23d1 2
Ti [Ar] 4s23d2 3
V [Ar] 4s23d3 4
Cr [Ar] 4s13d5 7
Mn [Ar] 4s23d5 6
Fe [Ar] 4s23d6 5
Co [Ar] 4s23d7 4
Ni [Ar] 4s23d8 3
Cu [Ar] 4s13d10 2

Fortuitous cancellation of errors is less likely and inherent tendencies of
the method under examination may be revealed.

We have performed calculations on the atoms Li through Kr with
many basis sets using the P3 method. The results are presented in three
groups: alkali and alkaline earth elements, transition metal elements,
and p group elements. Electron configurations of transition metal atoms
are listed in Table 5.4. For the purposes of this discussion, we have
grouped the basis sets into four categories: Pople, Dunning, ECP, and
ANO. Data are reported in Tables 5.5, 5.6, and 5.7 for the basis sets
that give the best results from each of the four groups. No orbitals were
dropped from the summations in the P3 formulae of Eqs. (3.6) and (3.9).

A summary of all calculations is given in Table 5.8. Dunning ba-
sis sets are available for p group elements only. Basis set comparisons
for other atoms therefore omit this category. Pople bases appear first,
followed by the Dunning, ANO, and ECP bases. The mean absolute
deviations (MADs) are listed.

P group elements. Molecules with p group elements already have
been studied with the P3 approximation and they probably will remain
inviting objects of study with this method. Errors obtained for the p

group elements (Table 5.5) are somewhat larger than those found for
organic molecules. Groups VI and VII are especially problematic.

Results for the other open-shell atoms are encouraging. One would
expect the P3 method to be considerably less accurate when an unre-
stricted Hartree-Fock reference state is used. The lowest MAD for B -
Ar obtains with the largest of the Dunning sets examined here, i.e. cc-
pVQZ. The 6-311++G(3df,3pd) and well-tempered basis sets (WTBS)
are roughly equivalent, with MADs of 0.50 eV and 0.57 eV, respectively.
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Table 5.5 Ionization energies and their MADs (eV) computed with the best basis
sets for p group elements.

Pople Dunning ANO ECP
6-311++G cc-pVQZ WTBS LANL2DZ

Atom (3df,3pd) Exp.a

B 8.10 8.25 7.72 7.68 8.30
C 10.97 11.15 10.87 10.57 11.26
N 14.18 14.38 14.82 13.78 14.54
O 12.82 13.24 14.05 12.35 14.61
F 16.79 17.13 18.21 16.25 17.42
Ne 21.21 21.46 22.67 20.56 21.56
Al 5.64 5.86 5.34 5.43 5.99
Si 7.77 8.03 7.49 7.77 8.15
P 10.14 10.41 9.96 9.99 10.49
S 9.52 10.08 9.34 9.33 10.36
Cl 12.26 12.74 12.41 12.18 13.01
Ar 15.25 15.65 15.48 15.08 15.75
Ga 5.73 5.45 5.37 6.00
Ge 7.66 7.42 7.34 7.88
As 9.73 9.54 9.43 9.82
Se 8.96 8.87 8.59 9.75
Br 11.26 11.29 10.88 11.84
Kr 13.77 13.87 13.41 14.00

MAD 0.50 0.25 0.57 0.82

a Ref. 51.

ECP basis sets performed as expected for these atomic systems, with
the Los Alamos double-ζ (LANL2DZ) working best. Its MAD is only
0.82 eV. However, the 31 split-valence ECP of Stevens et al. (CEP-31G)
and the Stuttgart-Dresden ECP (SDD) each generated a similar error
of 0.87 eV.

It is reasonable to expect P3 calculations with open-shell reference
states to be less accurate than their closed-shell counterparts. Unfortu-
nately, there is no obvious correlation between errors and multiplicity.

Errors remain relatively constant for groups III through V, with a
sharp increase at group VI. Removal of electrons from β spinorbitals in
unrestricted Hartree-Fock reference states is relatively poorly described.
Absolute errors for the noble gas elements are significantly lower than
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Table 5.6 Ionization Energies and their MADs (eV) computed with the best basis
sets for alkali and alkaline earth elements.

Pople ANO ECP
Atom 6-311++G(3df,3pd) Roos DZ LANL2DZ Exp.a

Li 5.35 5.36 5.33 5.39
Be 8.81 8.83 8.70 9.32
Na 4.97 4.97 N/A 5.14
Mg 7.24 7.26 N/A 7.64
K 4.22 4.07 3.99 4.34
Ca 5.83 5.84 5.68 6.11

MAD 0.25 0.27 0.37

a Ref. 51.

those for groups VI and VII. Multireference character in O and F mili-
tates against the P3 approximation,

Alkali and alkaline earth metals. Results obtained for the group I
and group II atoms are encouraging. As Table 5.6 shows, calculations
for the alkali atoms are slightly more reliable than those for the alkaline
earths. The largest error obtains for the quasidegenerate Be atom. ECP
bases provide a convenient alternative to all-electron treatments.

First-row transition metals. These metals present formidable chal-
lenges for quantum chemistry. With the energies of the d orbitals being
so close to those of the s orbitals for these atoms, the possibility of fi-
nal states with low pole strengths cannot be ignored. In addition, the
middle transition metals are generally difficult to describe with single-
determinant methods and require a more advanced approach for a proper
description.

In Table 5.7 data are omitted for the Sc and Ti atoms, where pole
strengths were well below the acceptable level of 0.80. The remaining
results are encouraging. The Roos double-ζ and the ECP SDD sets
perform well for Sc through Cr and Ni through Zn. If one ignores the
results for Mn through Co, the average absolute error falls sharply to
0.41 eV for the Roos double-ζ basis and to 0.44 eV for the ECP SDD
set.

Summary. Despite some noticeable flaws, the performance of the
P3 method for atomic calculations is satisfactory. Results for the chalco-
gens and halogens are somewhat disappointing. In view of the difficulties
in describing these atoms with far more complicated methods, this out-
come is not surprising. Troublesome results for Mn, Fe, and Co are not
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Table 5.7 Ionization energies amd their MADs (eV) computed with the best basis
sets for transition metal elements.

Pople ANO ECP
Atom 6-31G(d,p) Roos DZ SDD Exp.a

Sc 6.32 6.36 6.54
Ti 6.73 6.52 6.80
V 5.09 6.62 6.66 6.74
Cr 5.76 6.44 6.48 6.76
Mn 5.81 5.58 4.58 7.43
Fe 5.92 6.84 6.75 7.90
Co 6.00 6.89 6.87 7.86
Ni 6.07 7.00 6.92 7.63
Cu 6.14 7.10 6.93 7.72
Zn 8.24 8.87 8.64 9.39

MAD 1.73 0.70 0.81

a Ref. 51.

unexpected. It is perhaps more surprising that the P3 method performs
so well for the remainder of the first-row transition metals.

Aside from the results for the individual atoms, some trends in basis
set performance may be observed. Pople basis sets produced results
that were fairly accurate, especially for alkali and alkaline earth metals.
Although the results are much less accurate for the p group elements,
they are certainly within acceptable error for this simple approximation.
The steady decrease in errors observed in the progression from the P3/6-
31G to the P3/6-311++G(3df,3pd) level for nontransition elements also
attests to the sound design of these basis sets.

The Pople basis sets are perhaps the most efficacious for general
applications. Since the integral package in the Gaussian suite of pro-
grams is especially efficient with these basis sets, large systems may be
tackled routinely in this manner. The Roos double-ζ basis set provides
excellent results for all of the elements studied here, including the tran-
sition metals. As the Roos triple-ζ basis requires a significant increase
in computational cost, this choice is best for smaller systems.

Dunning basis sets have been optimized with atomic configuration
interaction calculations and show steady improvement as the basis set
quality is increased. The cc-pVQZ set is the most accurate in this cate-
gory, but its size probably will preclude its use in the larger calculations
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Table 5.8 Mean absolute deviations (eV) in the computed ionization energies.

Alkali and P group
Basis seta alkaline earths elements Transition metals

6-31G 0.41 0.92 2.78
6-311G 0.33 0.83 1.99
6-311++G 0.33 0.80 1.78
6-31G(d,p) 0.33 0.66 1.73
6-311++G(3df,3pd) 0.25 0.50 1.93

cc-pVDZ 0.67
aug-cc-pVDZ 0.51
cc-pVTZ 0.37
aug-cc-pVTZ 0.31
cc-pVQZ 0.25

WTBS 0.40 0.57 2.67
Wachters 1.47
Ahlrichs 0.46 1.31 1.91
Roos DZ 0.27 0.45 0.70
Roos TZ 0.38 0.13

CEP-121G 0.91 0.94
CEP-31G 0.87 0.97
CEP-4G 0.67 0.97
LANL2DZ 0.37 0.82 1.91
LANL2MB 0.78 1.48 1.58
SDD 0.63 0.87 0.81
SHC 0.34 0.90

a Refs. 49 and 50.

for which the P3 method is most suited. A steady decline in MAD occurs
with increasing size of Dunning basis sets.

Among the ANO basis sets, the Roos double-ζ basis set is clearly
preferable. Convergence problems were encountered with Roos triple-ζ
basis sets, especially during the pole search in the propagator calculation.
Preliminary results are encouraging.

The performance of the P3 method used in conjunction with ECPs
is also encouraging. Among the p group metals, the CEP-4G set is the
most accurate (MAD of 0.67 eV), with the SHC potential of Goddard
and Smedley performing best for the alkalis and alkaline earths (MAD
of 0.34 eV). The SDD sets succeed in all three cases and produce errors
that are competitive with all of the other ECPs.

The overall performance of the P3 method for the atomic systems
(see Table 5.8) is encouraging. Transition metals are difficult to describe
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and the average absolute error for these atoms is generally several times
larger than that obtained for the other atoms in the study. However, an
unexpected result is the ability of the ECP basis sets to generate errors
of less than 1.0 eV for most atoms. Although the errors are relatively
large, we anticipate that a combination of ECP and all-electron basis
sets will provide an acceptable description of molecules containing these
atoms.

7.2. Molecular Species

The G2 set. Calculations of ionization energies and electron affini-
ties for molecules and ions from the G2 set [47] were performed with
P3 methods. The diversity of bonding in this set presents a convenient
standard for testing the new methodology introduced here, such as elec-
tron affinity formulae and procedures for electron binding energies of
open-shell systems.

Our implementation computes only vertical ionization energies and
electron affinities, but experimental results for the G2 species are adi-
abatic. To facilitate a direct comparison between the theoretical and
experimental results, it is necessary that either the theoretical results be
corrected to adiabatic values or that the adiabatic values be related to
vertical ones. We have chosen the latter approach and have corrected
the experimental results with computational data.

Electron binding energies were calculated in three ways, each in-
volving four steps. The complete procedure is outlined below.

A. Neutral Geometry:

1. HF/6-31G(d) geometry optimization for neutral species with
vibrational frequencies to determine zero-point energy.

2. MP2/6-31G(d) geometry optimization for neutral species.

3. Electron propagator calculations

a) Calculation of electron affinity of the neutral species using
the P3 method with 6-311++G(2df,2p) basis set.

b) Calculation of ionization energy of the neutral species
using the P3 method with 6-311G(2df,2p) basis set.

4. Single point energies

a) Single-point MP2/6-31G(d) calculation for the anionic
species at the neutral geometry.

b) Single-point MP2/6-31G(d) calculation for the cationic
species at the neutral geometry.
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B. Anion Geometry:

1. HF/6-31G(d) geometry optimization for anionic species with
vibrational frequencies to determine the zero-point energy.

2. MP2/6-31G(d) geometry optimization for anionic species.

3. Calculation of ionization energy (electron detachment energy)
of the anionic species using P3 method with 6-311++G(2df,2p)
basis set.

4. Single-point MP2/6-31G(d) calculation for the neutral species
at the anion geometry.

C. Cation Geometry:

1. HF/6-31G(d) geometry optimization for cationic species with
vibrational frequencies to determine the zero-point energy.

2. MP2/6-31G(d) geometry optimization for cationic species.

3. Calculation of electron affinities of the cationic species using
P3 method with 6-311G(2df,2p) basis set.

4. Single-point MP2/6-31G(d) calculation for the neutral species
at the cation geometry.

In cases where experimental data were missing for ionization energies or
electron affinities, some steps were omitted. The initial geometries were
obtained from the authors of the original G2 study [52].

Transition energies between cations and neutral species were calcu-
lated by two procedures. In the first one, the vertical ionization energy
of the neutral molecule was determined with the P3 method. These
values were compared with experimental adiabatic ionization energies of
the neutral molecules, which were adjusted according to

IEN = IEexp + ZN + RN−1 − ZN−1 , (7.1)

where IEexp is the experimental (adiabatic) ionization energy, ZN is the
zero-point energy (ZPE) of the neutral molecule calculated at the HF/6-
31G(d) level, ZN−1 is the ZPE of the cation, and RN−1 is the relaxation
energy of the cation between the neutral and cation equilibrium geome-
tries. In other words, each standard of comparison IEN is an experimen-
tal datum adjusted by calculated zero-point and relaxation energies. In
the second procedure, the vertical electron affinity of the cation formed
in the first case was computed with the P3 method. These values were
compared with experimental, adiabatic electron affinities of the cation
(i.e. IEexp), which were adjusted according to

EAN−1 = IEexp + ZN − RN − ZN−1 , (7.2)



P3 Electron Propagator Approximations 153

where EAN−1 is the value to which the P3 result is compared.
Transitions between anions and neutral species were also calculated

with two procedures. In the first, we calculated the vertical P3 electron
affinities of neutral species. The experimental adiabatic electron affini-
ties of the neutral molecules were shifted according to

EAN = EAexp − ZN − RN+1 + ZN+1 , (7.3)

where EAexp is the experimental (adiabatic) electron affinity, ZN is the
ZPE of the neutral molecule, ZN+1 is the ZPE of the anion, and RN+1 is
the relaxation energy of the anion between the neutral and anion equi-
librium geometries. In the second procedure, the P3 ionization energy
of the anion (that is, the anion’s electron detachment energy) was calcu-
lated at the anion’s geometry. Vertical ionization energies of the anions
IEN+1 were obtained from experimental adiabatic values, where

IEN+1 = EAexp + ZN+1 + RN − ZN . (7.4)

This sequence of calculations was applied to neutral and ionic molec-
ular species from the G2 test set. Experimental adiabatic electron affini-
ties and ionization energies were taken from Refs. 53 - 74.

Neutral singlets. This class of systems comprises singlet molecules
with transitions to doublet cations or anions. Most applications of the
P3 method will pertain to such systems.

Electron affinities were calculated as described above with the ver-
tical corrections applied to the experimental results. For molecules with
electron affinity data, the overall results are good, with a MAD of just
0.20 eV. The F atom was difficult to describe and this failure is proba-
bly related to the low accuracy of the CF2 calculation, where the error
exceeded 1.0 eV.

Similar accuracy obtains when considering the ionization energy
(i.e. the electron detachment energy) of the associated doublet anions.
Here, MAD is 0.33 eV. For anionic ozone, the error is significantly larger.
It is well known that ozone has a great deal of multireference character
in its ground state. Ozone therefore is a poor candidate for the P3
method, which relies on the qualitative validity of the single-reference
description.

Next we consider ionization energies of neutral singlet states and
electron affinities of the associated doublet cations. Here we find that
the overall error is slightly larger (MAD of 0.36 eV) than was the case
for the electron affinities. Electron affinities of the doublet cations are
not treated as well by the P3 method. Here MAD is 0.52 eV.

Neutral doublet states. Electron affinities of neutral doublets where
the corresponding anions are singlets, not triplets, are poorly calculated
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Table 5.9 MADs for G2 molecules and ions.

Initial geometry Final state MAD (eV) na

1M 2M− 0.20 10
2M− 1M 0.33

1M 2M+ 0.36 35
2M+ 1M 0.52

2M 1M− 1.11 24
1M− 2M 0.20

2M 1M+ 0.26 10
1M+ 2M 0.21

a Number of species [75].

with the P3 method. For these systems, MAD is 1.11 eV. Evaluation of
the vertical electron detachment energies of the singlet anions, however,
is a more effective approach, for MAD is only 0.20 eV.

For the case of doublet neutrals and associated singlet cations, the
ionization energy results are good. Here, the average absolute error is
only 0.26 eV. Electron affinities for the singlet cations are also rather
accurate. MAD is even less, i.e. 0.21 eV. For energy differences between
doublets and triplets, there are not enough systems to establish patterns.
These results are highly variable in quality.

Doublet reference states. Some patterns emerge from the calcula-
tions with doublet reference states. Table 5.9 presents a summary of
all cases involving transitions between singlets and doublets. Ionization
energy calculations perform well when a doublet reference state is used.
However, electron affinity calculations are advisable only when the dou-
blet reference state is cationic. Even here, it is preferable to reverse the
roles of initial and final states by choosing the closed-shell neutral as the
reference state in an ionization energy calculation. The P3 method is
not suitable for attachment of an electron to a neutral doublet reference
state to form a closed-shell anion. It is preferable to choose the anion as
the reference state for a P3 calculation of an electron detachment energy.
Results for triplets are unpredictable at best.
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8. CONCLUSIONS AND PROSPECTUS

P3 calculations with unrestricted Hartree-Fock reference states have
been reported here for the first time. In addition, a P3 procedure for
electron affinities of closed-shell and open-shell systems has been pre-
sented.

Some general trends may be discerned in the P3 results on atoms.
Ionization energies involving high-spin states are described well with
Pople, Dunning, ANO, and ECP basis sets. Average errors for the p

block elements are between 0.25 eV for Dunning’s quadruple-ζ basis
and 0.82 eV for the LANL double-ζ set. For the alkali and alkaline earth
metals, the average errors are smaller. Transition metals in the fourth
period require use of ANO or SDD sets; the average errors are 0.7 - 0.8
eV. Despite the complex character of electron correlation in 2p and 3d
elements, reasonable results obtain for this simple electron propagator
approximation based on an unrestricted Hartree-Fock reference state.
For transition metal complexes with high oxidation states and highly
electronegative ligands, one may expect the errors for metal-centered
holes to be smaller. Results of test calculations using SDD ECPs are
especially encouraging for this class of molecules, especially if a closed-
shell reference state may be used. Larger errors may be expected for
late transition metals, low oxidation states, and relatively electroposi-
tive ligands. The P3 method may be used to aid state assignments in
photoelectron spectra of organometallics.

Results on molecules and molecular ions display some instructive
tendencies. Electron detachment energies from closed-shell reference
states (neutral or anionic) are treated well if there is little multiconfig-
urational character in the initial singlet. Average errors for these cases
are about 0.2 - 0.4 eV. The quality of electron attachment energies to
closed-shell species is better, especially if the singlet is cationic. Another
new class of P3 calculations makes use of unrestricted Hartree-Fock ref-
erence states. If the reference state is a doublet, electron detachment
energies are treated well, with average errors of 0.2 - 0.3 eV. Electron
attachment energies to doublets are satisfactory if the reference state
is cationic; caution must be exercised if the doublet reference state is
neutral.

Although P3 procedures perform well for a variety of atomic and
molecular species, caution is necessary when applying this method to
open-shell reference states. Systems with broken symmetry in unre-
stricted Hartree-Fock orbitals should be avoided. Systems with high
multireference character are unlikely to be described well by the P3 or
any other diagonal approximation. In such cases, a renormalized elec-
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tron propagator should be used. In general, P3 will fail when Hartree-
Fock theory does not provide a qualitatively acceptable description of
the reference state.

The pole strength is a useful diagnostic criterion of problematic
cases. Close agreement with experiment in the presence of a pole strength
that is less than 0.80 is likely to be the result of a fortuitous cancellation
of errors.

The P3 methods for ionization energies and electron affinities pro-
vide useful, correlated corrections to canonical Hartree-Fock orbital en-
ergies. Their computational demands are modest, especially for electron
detachment energies. It is often possible to avoid difficult cases by revers-
ing the labels of initial and final states. Fifth-power arithmetic scaling
factors characterize the bottleneck contractions in P3 calculations. Full
integral transformations to the Hartree-Fock basis and storage of the
largest blocks of integrals may be avoided. In general, P3 calculations
may be executed for any molecule where a second-order total energy cal-
culation is feasible. Information on excited final states may be obtained
easily. Interpretation of the results in terms of orbitals is facilitated
by the diagonal self-energy approximation, where each Dyson orbital is
equal to a canonical Hartree-Fock orbital times a scaling factor which is
equal to the square root of the corresponding pole strength.
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75. Singlet electron affinities: H2CCC, O3, HNO, LiH, SO2, S2O, HCF, CF2, CH2S,
SiH2. Singlet ionization energies: HF, H2O, Si2H6, HCl, H2S, cyclopropene, CS,
CO2, ClF, CS2, thiooxirane, Si2H2, propyne, SiH4, Si2H4, PH3, N2H2, HOF,
NH3, C2H2, BF3, B2F4, BCl3, B2H4, CH3CHO, CH3SH, CH3OH, NCCN, CO,
CH4, CH3F, CH3Cl, CF2, CH2S, SiH2. Doublet electron affinities: HCCO, HCO,
HOO, NCO, NO2, OF, CH3O, NH2, CH2CN, CH2NC, C2H3, C3H5, CCH,
CH3CH2O, CH3S, H2CCCH, H2CCHO, CH3CO, CH3, CN, OH, PH2, SH, SiH3.
Doublet ionization energies: Si2H5, CH2SH, C2H5, H2COH, N2H3, CH3, CN,
NH2, PH2, SiH3.


