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ABSTRACT: The energy-dependent, nonlocal correlation potential known as the self-
energy that appears in the Dyson equation has a pole and residue structure that enables
renormalizations of its low-order, perturbative contributions to be estimated. The partial
third-order (P3) approximation has been extensively applied to the ionization energies
of closed-shell, organic molecules and is the most successful example of a low-order,
self-energy method. A renormalization based on the P3 self-energy estimates higher-
order contributions by scaling low-order terms that chiefly describe final-state
relaxation. The resulting P3� self-energy retains the accuracy and efficiency of the P3
approximation, but also improves the latter method’s performance with respect to the
calculation of anion electron detachment energies without the introduction of adjustable
parameters. An application to an anion that previously has yielded only to more
intricate treatments of electron correlation demonstrates the power of this simple, new
approximation. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem 105: 803–808, 2005
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Introduction

Q uantum chemists have always returned to
one-electron equations to inform their quali-

tative reasoning about electronic structure and to
provide efficient strategies for computation [1]. In
recent years, the one-electron equations provided
by Kohn–Sham theory have formed the framework
for the optimization of model chemistries [2]. The

frontier of this field features increasingly complex
exchange-correlation potentials that are functionals
of the orbitals of a reference determinant. With the
introduction of adjustable parameters, considerable
scope for the extrapolation and interpolation of
chemical data lies at the disposal of the computa-
tional chemist.

An alternative one-electron formalism provided
by electron propagator theory [3] is based on a
systematically improvable approach to correlation
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potentials. Here, the complexity of the nonlocal,
energy-dependent correlation operator known as
the self-energy grows quickly with respect to order
in the fluctuation potential. Whereas only two self-
energy diagrams occur in second order, there are 18
in third order. The exaggeration of the correlation
effects that is typical of second-order calculations of
electron binding energies usually is overcompen-
sated in third-order results.

A recent trend in perturbative total energy cal-
culations of low order is to introduce parameters
that improve predictive capabilities for certain
properties in a class of molecules [4]. Thus the
strengths of ab initio, many-body theory such as
retention of size-extensivity and proper description
of dispersion effects are appropriated by the empir-
ical focus of parameterized methods. Such a strat-
egy also enables the computational practitioner to
make useful extrapolations in a set of chemically
similar molecules on the basis of methods that have
been calibrated astutely.

A similar approach has been taken with electron
propagator calculations. Components of the sec-
ond-order self-energy with the same or mixed spin
indices have been scaled with independent factors
to produce a method with enhanced predictive ca-
pabilities for the valence ionization energies of
closed-shell molecules [5]. In contrast, other work-
ers have employed unaltered, self-energy formulas
with semiempirical Hamiltonians [6].

Here an attempt is made to improve the predic-
tive capabilities of a simple self-energy approxima-
tion that has proven its utility in the assignment of
photoelectron spectra of organic molecules. This
method, known as the partial third-order (P3) ap-
proximation, has clear advantages over many ab
initio, correlated methods in the number of arith-
metic operations it requires and in the dimensions
of the computational intermediates it generates [7].
With polarized, triple-� basis sets, it consistently
provides predictions of ionization energies that lie
within approximately 0.2 eV of experimental peaks.
Spectral assignments for polyheterocyclic aromatic
compounds, nucleic acids, nucleotides, amino ac-
ids, porphyrins, and other organic molecules have
been efficiently realized with P3 calculations. Un-
fortunately, applications to systems with stronger
electron correlation in initial or final states have
yielded less accurate results. Assignments of the
photoelectron spectra of anions often require accu-
racy of 0.1–0.2 eV, for experimental samples often
consist of more than one isomer. Clusters in which
anions are coordinated to metals in positive oxida-

tion states present similar challenges. Therefore, the
need for a method with computational require-
ments that are similar to those of the P3 approxi-
mation but with enhanced predictive capabilities is
apparent. The new approximation that emerges
from this attempt, P3�, is derived below. An ap-
plication to the photoelectron spectrum of a metal
oxide anion that has attracted considerable interest
among experimentalists illustrates the predictive
and interpretive capabilities of the P3� self-energy.

Theory

THE PARTIAL THIRD-ORDER SELF-ENERGY

From the Dyson equation for the electron prop-
agator, the following one-electron equations may
be deduced:

�F � ��E���Dyson � E�Dyson, (1)

where F is the Fock operator that depends on the
one-electron density matrix of the reference state
and �(E) is the self-energy operator. Electron bind-
ing energies correspond to those values of E which
satisfy the Dyson equation and the associated
eigenfunctions are known as Dyson orbitals. For an
electron detachment energy from an N-electron ref-
erence state that is associated with a final state s, the
Dyson orbital reads

�s
Dyson�x1� � N1/ 2 � �N�x1, x2, x3, . . . , xN�

�*s,N�1� x2, x3, x4, . . . , xN�dx2dx3dx4 . . . dxN,

(2)

where xt is the space–spin coordinate for electron t.
For electron affinities, where an electron is added to
the reference state, the Dyson orbital is given by

�s
Dyson�x1� � �N � 1�1/ 2 � �s,N�1�x1, x2, x3, . . . , xN�1�

�*N� x2, x3, x4, . . . , xN�1�dx2dx3dx4 . . . dxN�1.

(3)

For valence ionization energies of closed-shell mol-
ecules, the off-diagonal matrix elements of the self-
energy operator in the canonical Hartree–Fock basis
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may be neglected and the Dyson equation is re-
duced to a simple form:

�r � �rr�E� � E, (4)

where �r is a Hartree–Fock orbital energy. In the
diagonal approximation of the self-energy matrix,
the Dyson orbital equals the square root of the pole
strength times a canonical Hartree–Fock orbital. Af-
ter iterating with respect to E to find a pole, the pole
strength, Pr is given by

Pr � �1 �
d�rr(E)

dE ��1

. (5)

For real spin–orbitals, the diagonal, P3 self-en-
ergy matrix elements for electron detachment ener-
gies read

�pp
P3 �

1
2 �

iab

	pi�ab
	ab�pi

E � �i � �a � �b

�
1
2 �

aij

	pa�ij
�	ij�pa
 � Wpaij � Upaij�E��

E � �a � �i � �j
, (6)

where

Wpaij �
1
2 �

bc

	pa�bc
	ij�bc


�i � �j � �b � �c

� �1 � Pij� �
bk

	pk�bi
	jk�ba


�j � �k � �a � �b
(7)

and

Upaij�E� � �
1
2 �

kl

	pa�kl
	kl�ij

E � �a � �k � �l

� �1 � Pij� �
bk

	pb� jk
	ak�bi

E � �b � �j � �k

, (8)

where occupied and virtual spin–orbitals are des-
ignated, respectively, by i, j, k, . . . and a, b, c, . . .
indices [8]. This approximation retains all second-
order terms and has some two-hole, one-particle
terms in third order. For electron affinities, the roles
of occupied and virtual indices are reversed. The
rate-limiting contraction pertains to the first term in
the W intermediate, which scales as o2v3, where o
and v are the numbers of occupied and virtual

orbitals, respectively. Because p is an occupied in-
dex for electron detachment energies, the largest
required subset of transformed two-electron inte-
grals is the 	pa�bd
 set; a complete integral transfor-
mation is not needed. These computational require-
ments are similar to those imposed by second-order
perturbation theory for ground states. Practical
calculations, especially those where symmetry-
adapted algorithms may be employed, are likely to
be bound by the integral transformation step in-
stead of the contractions required for evaluation of
self-energy matrix elements.

SELF-ENERGY RENORMALIZATIONS

It is possible to express the exact form of the
self-energy matrix in the following form:

�pq�E� � �
I

nh�n�1� p VIZI

E � fI � XI

� �
A

np�n�1�h VAZA

E � fA � XA
. (9)

I and A are indices of secondary operators, such as
those of the two-hole, one-particle (2hp) or two-
particle, one-hole (2ph) types. The terms of lowest
order in the residues are given by

Vaij � 	pa�ij
	ij�qa
, (10)

and

Viab � 	pi�ab
	ab�qi
. (11)

Zeroth-order poles occur at values of E where the
following terms vanish:

faij � E � �a � �i � �j, (12)

fiab � E � �i � �a � �b. (13)

By setting all Z factors to unity and neglecting the X
terms, the second-order self-energy matrix element,
�pq

(2)(E), is recovered.
If one lets

ZI � 1 � YI (14)

and expands the denominators of the exact form in
powers of (E � fI � XI)

�1, then
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�
I

VIZI

E � fI � XI
� �

I

VI

E � fI
�1 �

XI

E � fI
� . . .�

� �
I

VIYI

E � fI
�1 �

XI

E � fI
� . . .� . (15)

The assumption that the X factors are small is im-
plicit here. An approximate form with a scaled
interaction may be written as

�
I

VIZI

E � fI � XI
� �1 � Y�E�� �

I

VI

E � fI

� �1 �
XI

E � fI
� . . .� , (16)

where Y(E) is assumed to vary slowly with E. Com-
parisons between terms in the last equation with
those that have an equal number of (E � fI � XI)

�1

denominators in the P3 approximation suggest that
a reasonable approximation is

Y�E� �

�
1
2 ¥aij 	pa�ij
Wpaij�E � �a � �i � �j�

�1

�pp
�2��E�

.

(17)

One may estimate higher-order effects with

�
I

VIZI

E � fI � XI
� �1 � Y�E���1 �

I

VI

E � fI

� �1 �
XI

E � fI
� . . .� . (18)

Therefore, a renormalized extension of the P3
self-energy, with the designation P3�, may be ex-
pressed as

�pp
P3� �

1
2 �

iab

	pi�ab
	ab�pi

E � �i � �a � �b

� �1 � Y�E���1
1
2 �

aij

	pa�ij
�	ij�pa
 � Wpaij � Upaij�E��

E � �a � �i � �j
.

(19)

Evaluation of P3� matrix elements requires practi-
cally no additional computational work with re-
spect to P3 calculations. Similar arguments were

employed in the derivation of the B version of the
outer-valence Green’s function procedure [9], but
no numerical parameters are introduced presently
to influence the selection of one renormalization
procedure versus another [10].

Tests were performed on the 31 valence, vertical
ionization energies below 20 eV of 11 typical,
closed-shell molecules (N2, CO, F2, HF, H2O, NH3,
CH4, C2H4, C2H2, HCN, and H2CO) and on the
lowest vertical electron detachment energies of 10
closed-shell anions (F�, OH�, NH2

�, Cl�, SH�,
PH2

�, CN�, BO�, AlO�, and AlS�) [11]. Whereas
the mean absolute deviations for molecules shown
in Table I are approximately the same for P3 and
P3�, for anions there is a clear advantage for the
latter method. The stability of the results with re-
spect to basis set improvement also is better for
P3�. No numerical parameters are introduced in
the performance of P3� calculations.

The first term in the P3� self-energy expression
may be considered to describe the elimination of
certain reference-state, pair energies in the final
state with N � 1 electron. These effects are treated
only through second-order in the fluctuation poten-
tial. This approximation is likely to restrict the ap-
plicability of the P3� method to nonmetallic sys-
tems. The most important effects that are described
by the remaining terms involve final-state orbital
relaxation. Introduction of the [1 � Y(E)]�1 factor
prevents the overestimation of these effects that
occurs when unscreened interactions are employed.

Al3O3
� Photoelectron Spectra

The following application of the P3� method
illustrates its ability to treat correlation effects in
anions and molecules where a subtle competition
between covalent and ionic interactions requires
quantitatively accurate predictions to support qual-
itative interpretations of chemical bonding. The
photoelectron spectrum of Al3O3

� features an elec-

TABLE I ______________________________________
Mean absolute deviations, eV.

Initial states Basis P3 P3� [11]

Molecules cc-pvtz 0.20 0.19
Molecules cc-pvqz 0.28 0.19
Anions aug-cc-pvtz 0.25 0.11
Anions aug-cc-pvqz 0.29 0.13
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tron binding energy at 2.25 eV whose peak intensity
varies markedly with laser fluence and the degree
of O2 seeding in the He carrier gas that transports
the mass-selected anion to the site of photodetach-
ment [12]. In addition, more intense peaks have
been reported in several papers and the unusual
phenomenon of anion photoisomerization has been
confirmed [12–14]. Optimizations of a large number
of ground-state structures yielded two isomers with
nearly identical total energies [15]. These minima,
designated the book and kite, may be expected to
have vertical electron detachment energies that cor-
respond to the peaks of the experimental spectrum.

To obtain a consistent interpretation of the ex-
periments, it was necessary in previous studies [15]
to employ an advanced electron propagator tech-
nique (BD-T1 [1]) based on a Brueckner doubles,
coupled-cluster reference state and a full, renormal-
ized treatment of the 2ph plus 2hp operator mani-
fold. The BD-T1 results of Table II were obtained
with the 6-311�G(2df ) basis set. Close agreement
with experimental peaks is obtained for the first
two vertical electron detachment energies of both
isomers, which are simultaneously present in the
experimental samples. Whereas the P3 approxima-
tion works well for the book isomer, it fails badly
for the kite structure. (These calculations employed
the same basis set and were performed with a mod-
ified version of Gaussian 03 [16].) In contrast, the
P3� approximation gives an accurate account of
the photoelectron spectra of both anions [17]. The
reference state calculation that precedes the BD-T1
calculation limits the application of this method
to relatively small systems. In addition, the pole
search procedure that is entailed by the renormal-
ized treatment of the full manifold of 2hp and 2ph
operators requires many interations with o2v3 arith-
metic scaling factors. The P3� method produces
results of similar accuracy with considerably
smaller computational effort.

In the book isomer, the two lowest electron de-
tachment energies correspond to metal-centered

Dyson orbitals, in accord with the Aufbau rules [18]
that usually govern the electronic structure of alu-
minum oxide clusters. According to these guide-
lines for counting electrons, each O center is con-
sidered to be a dianion. Therefore, each Al3O3

�

cluster is regarded as having four metal-centered,
valence electrons that are assigned to two Dyson
orbitals which connect the closed-shell, anionic ref-
erence state to the ground and first excited states of
the neutral doublet clusters. At the Koopmans level,
a similar prediction is made for the kite isomer.
However, these uncorrelated predictions are quali-
tatively incorrect for the kite isomer, for the order of
the first four final states is erroneous. Correlated
methods are necessary to assign an oxygen-cen-
tered Dyson orbital to the second electron detach-
ment energy of the kite anion. Whereas the first
electron detachment energy corresponds to a
Dyson orbital that is localized chiefly on an Al atom
with two oxide neighbors, the Dyson orbital that
pertains to the second electron detachment energy
exhibits a � antibonding interaction between the
same two oxides.

Conclusions

The P3 approximation has enjoyed considerable
success in the assignment and interpretation of the
photoelectron spectra of organic molecules, espe-
cially heterocyclic compounds. A rich variety of
applications to molecules with biochemical impor-
tance has been enabled by the computational effi-
ciency and conceptual clarity of this method. How-
ever, the poorer performance of the P3 self-energy
in predicting electron detachment energies of an-
ions has compelled the use of more exact methods
with higher computational requirements in studies
of metal oxide anions. The simple renormalization
procedure that distinguishes the P3� method from
its immediate predecessor avoids exaggeration of
final-state relaxation effects with virtually no addi-
tional computational labor.

The success of the P3� method in assigning and
interpreting the photoelectron spectrum of Al3O3

� is
related to its ability to predict the electron detach-
ment energy of OH� to within 0.1 eV of experiment
with a polarized, triple-� basis that is augmented
with diffuse functions. Similar success in describing
anions with F and N atoms bodes well for applica-
tions to other clusters with metals in high oxidation
states. The conceptual simplicity of the P3� self-
energy and its lack of adjusted parameters are en-

TABLE II ______________________________________
Al3O3

� vertical electron detachment energies, eV.

Anion Final state BD-T1 P3 P3� [17] Expt. [12]

Book 2B2 3.07 2.85 2.84 2.96
2A1 3.73 3.49 3.48 3.7

Kite 2A1 2.36 2.02 2.01 2.25
2B2 5.37 5.73 5.30 5.2
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couraging portents. Applications of this promising
computational and interpretive tool to larger metal
oxide clusters that pertain to the stoichiometric and
catalytic chemistry of nanoparticles and active sur-
faces are now in progress.

ACKNOWLEDGMENT

The National Science Foundation supported this
research through grant CHE-0135823 to Kansas
State University.

References

1. Ortiz, J. V. Adv Quantum Chem 1999, 35, 33.
2. Kohn, W.; Sham L. Phys Rev 1965, 140, 1133.
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