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1 Conceptual Goals for One–Electron Theories

One–electron pictures of molecular electronic structure continue to inform in-
terpretations of structure and spectra. These models are the successors of qual-
itative valence theories that attempt to impose patterns on chemical data and
to stimulate experimental tests of predictions. Therefore, in formulating a one–
electron theory of chemical bonding, it is desirable to retain the following con-
ceptual advantages.

One–electron Energies Orbital energies should be equal to ionization ener-
gies and electron affinities (electron binding energies). They should be the
eigenvalues of a one–electron operator with an effective, many–electron
potential. All ionization energies should be predicted, without artificial
distinctions between core versus valence or principal versus shakeup de-
scriptions of final states. Bound and unbound electron–attached states
should correspond to negative and positive orbital energies, respectively.

One–electron States For each electron binding energy, there should be a cor-
responding orbital that is an eigenfunction of the same effective, one–
electron operator. Orbitals should display phase relationships that permit
interpretations in terms of kinetic energy and interference effects. Transi-
tion probabilities corresponding to the electron binding energies should be
related to the same orbitals. Effects of electron detachment or attachment
on nuclear positions should depend on forces associated with the orbitals.

Density Matrices One–electron density matrices of initial and final states
should be related to the orbitals used to interpret electron binding en-
ergies. Their eigenvalues should lie between zero and unity and their
traces should equal the number of electrons in each state. One–electron
properties should be size–extensive.

Total Energies Total energies should be related to orbitals and their energies.
They should be size–extensive as well.

Numerical Representation The theory should be systematically improvable
with respect to basis sets or integration schemes.

Independence There should be no parameters which have been adjusted to
reproduce certain data from experiment or from unrelated sources.

Potential Energy Surfaces All potential energy surfaces generated with this
theory should be smooth. No discontinuities due to symmetry reduction
should occur.

Electron Correlation The theory should have a limiting case of exact total
energies, electron binding energies and corresponding transition probabil-
ities.



Hartree–Fock (HF), molecular orbital theory satisfies most of the criteria,
but qualitative failures and quantitative discrepancies with experiment often
render it useless. Methods that systematically account for electron correlation,
employed in pursuit of more accurate predictions, often lack a consistent, in-
terpretive apparatus. Among these methods, electron propagator theory [1]
is distinguished by its retention of many conceptual advantages that facilitate
interpretation of molecular structure and spectra [2, 3, 4, 5, 6, 7, 8, 9].

2 Electron Propagator Poles and Residues

The physical meaning of the electron propagator rests chiefly in its poles (en-
ergies where singularities lie) and residues (coefficients of the terms responsible
for the singularities) [1]. In its spectral form, the r, s element of the electron
propagator matrix is

Grs(E) =

lim
η→0
{
∑
n

〈N |a†r|N − 1, n〉〈N − 1, n|as|N〉
E + En(N − 1)− E0(N)− iη

+

∑
m

〈N |as|N + 1,m〉〈N + 1,m|a†r|N〉
E − Em(N + 1) + E0(N) + iη

}. (1)

The propagator matrix is energy–dependent; poles occur when E equals an
ionization energy, E0(N)−En(N−1), or an electron affinity, E0(N)−Em(N+1).
Dyson orbitals (DOs) for ionization energies are defined by

φDyson,IEn (x1) =
∫

ΨN (x1, x2, x3, . . . , xN )Ψ∗N−1,n(x2, x3, x4, . . . , xN )

dx2dx3dx4 · · · dxN , (2)

and are related to propagator residues (also known as Feynman–Dyson ampli-
tudes) by

φDyson,IEn (x) =
∑
r

φr(x)〈N − 1, n|ar|N〉. (3)

For electron affinities, the corresponding relationships are

φDyson,EAn (x1) =
∫

Ψ∗N (x2, x3, x4, . . . , xN+1)ΨN+1,n(x1, x2, x3, . . . , xN+1)

dx2dx3dx4 · · · dxN+1 (4)

and
φDyson,EAn (x) =

∑
r

φr(x)〈N + 1, n|a†r|N〉. (5)



Many kinds of transition probabilities depend on DOs. Photoionization cross
sections, σPI , are proportional to the absolute squares of matrix elements be-
tween DOs and continuum orbitals, or

σPI = κPI |〈φDyson|T̂ φContinuum〉|2, (6)

where κPI is a constant and T̂ is a transition operator describing the interaction
between electrons and the radiation field [10]. DOs also are useful in computing
cross sections for various electron scattering processes [11, 12].

For the final state, n, the pole strength, Pn, is defined by

Pn =
∫
|φDysonn (x)|2dx. (7)

Normalized DOs therefore read

ψDysonn (x) = P
− 1

2
n φDysonn (x). (8)

In the uncorrelated limit, where the many–electron Fock operator replaces
the full electronic Hamiltonian, familiar objects of HF theory are recovered as
special cases. |N〉 becomes a HF, determinantal wavefunction for N electrons
and |N ± 1〉 states become the frozen–orbital wavefunctions that are invoked
in Koopmans’s theorem. Poles equal canonical orbital energies and DOs are
identical to canonical orbitals.

It is possible to use full or limited configuration interaction wavefunctions to
construct poles and residues of the electron propagator. However, in practical
propagator calculations, generation of this intermediate information is avoided
in favor of direct evaluation of electron binding energies and DOs.

3 Operator Space Diagonalization

Through introduction of superoperators and a corresponding metric [13], the
propagator may be represented more compactly [2, 6]. Superoperators act on
field operator products, X, where the number of annihilators exceeds the num-
ber of creators by one. The identity superoperator, Î, and the Hamiltonian
superoperator, Ĥ, are defined by

ÎX = X (9)

and
ĤX = [X,H]−, (10)

respectively. The superoperator metric, defined by

(µ|ν) = 〈N |[µ†, ν]+|N〉, (11)



depends on the choice of the N–electron reference state, |N〉. Consideration
of ionization energy and electron affinity poles in a single propagator leads to
the anticommutator, µ†ν + νµ†, contained in the metric definition. (Had this
discussion considered either the first or second summations in equation 1, the an-
ticommutator would have been abandoned in favor of µ†ν or νµ†, respectively.)
With this notation, one may write

Grs(E) = (ar|(EÎ − Ĥ)−1as). (12)

Thus the matrix elements of the electron propagator are related to field oper-
ator products arising from the superoperator resolvent, (EÎ − Ĥ)−1, that are
evaluated with respect to |N〉. In this sense, electron binding energies and DOs
are properties of the reference state.

In matrix notation, equation 12 is rewritten as

G(E) = (a|(EÎ − Ĥ)−1a), (13)

where the rank of the propagator matrix equals the number of spin–orbitals.
After inner projection,

G(E) = (a|u)(u|(EÎ − Ĥ)u)−1(u|a), (14)

where u is the vector of all X field operator products. An inverse matrix instead
of an inverse superoperator is considered henceforth.

If u is partitioned into the primary space, a, and an orthogonal space of
product operators, f , the partitioned form of the propagator matrix reduces to

G(E) =
[

1 0
] [ E1− (a|Ĥa) −(a|Ĥf)

−(f |Ĥa) E1− (f |Ĥf)

]−1 [
1
0

]
. (15)

Poles of the propagator therefore occur at values of E that are equal to
eigenvalues, ω, of the superoperator Hamiltonian matrix:

ωn

[
Ua,n

Uf ,n

]
=
[

(a|Ĥa) (a|Ĥf)
(f |Ĥa) (f |Ĥf)

] [
Ua,n

Uf ,n

]
(16)

or
Uω = ĤU. (17)

In the new basis of operators,

G(E) =
[

1 0
] [

U(E1− ω)−1U†
] [ 1

0

]
. (18)

The DO corresponding to the pole, ωn, is

φDysonn =
∑
r

φrU
∗
r,n (19)



and the pole strength reads

Pn =
∑
r

|Ur,n|2. (20)

Note that contributions from the secondary sector of the eigenvectors, Uf , do
not appear in the residues, for the summation index, r, pertains to spin–orbitals
only.

Because this route to poles and residues requires only solutions of equa-
tion 17, the usual matrix diagonalization techniques characteristic of CI calcu-
lations may be applied [14, 15]. The chief conceptual difference between diago-
nalization of Ĥ and diagonalization of the Hamiltonian matrix in Hilbert space
is that operators, not many–electron configurations, form the basis. In addition,
solutions correspond not to state energies, but to electron binding energies. For
each of these energy differences, there corresponds an operator expressed as a
linear combination of X components.

Simultaneous treatment of the ionization energy and electron affinity com-
ponents of the electron propagator allows operator mixings that are not present
in Hilbert space methods for energy differences. For ionization energies, oper-
ators corresponding to virtual (particle or p) orbitals, shakeon (two particle,
one hole or 2p–h) and other (3p–2h, 4p–3h, 5p–4h, et cetera) processes may
contribute to the eigenvector, U, in addition to the usual CI–like operators for
occupied (hole or h) orbitals, shakeup (two hole, one particle or 2h–p) and other
(3h–2p, 4h–3p, 5h–4p, et cetera) processes that generate (N–1)–electron states
in Hilbert space when operating on a reference configuration. Electron affinity
operators also have h, p, 2h–p, 2p–h and higher–operator–product constituents.

4 Solving One–Electron Equations

Partitioning the operator manifold can lead to efficient strategies for finding
poles and residues that are based on solutions of one–electron equations with
energy–dependent effective operators [16]. In equation 15, only the upper left
block of the inverse matrix is relevant. After a few elementary matrix manipu-
lations, a convenient form of the inverse–propagator matrix emerges, where

G−1(E) = E1− (a|Ĥa)− (a|Ĥf)
[
E1− (f |Ĥf)

]−1

(f |Ĥa). (21)

Because
(ar|Ĥas) = hrs +

∑
tu

(rs||tu)ρtu, (22)

where ρ is the one–electron density matrix, the primary operator space block
of Ĥ may be considered to be a generalized Fock matrix, F. It is possible to



separate the correlated and uncorrelated contributions to the (a|Ĥa) block. In
the canonical MO basis,

(ar|Ĥas) = εrδrs +
∑
tu

(rs||tu)ρctu = Frs, (23)

where the correlation contribution to the one–electron density matrix is ρc and

ρ = ρHF + ρc. (24)

Elements of the zeroth–order, inverse–propagator matrix are

G−1
0 (E)rs = (E − εr)δrs. (25)

(The poles correspond to Koopmans’s theorem.) The inverse–propagator matrix
and its zeroth–order counterpart therefore are related through

G−1(E) = G−1
0 (E)−Σ(∞)−Σ′(E) (26)

where
Σ(∞)rs = (ar|Ĥas)correlation =

∑
tu

(rs||tu)ρctu (27)

and
Σ′(E) = (a|Ĥf)

[
E1− (f |Ĥf)

]−1

(f |Ĥa). (28)

Corrections to the zeroth–order, inverse propagator in equation 26 are gathered
together in a term known as the self–energy matrix, Σ(E). The Dyson equation
may be written as

G−1(E) = G−1
0 (E)−Σ(E). (29)

In the self–energy matrix, there are energy–independent terms and energy–
dependent terms:

Σ(E) = Σ(∞) + Σ′(E). (30)

In the limit of |E| → ∞, Σ(E) approaches its energy–independent component,
Σ(∞).

When |detG(E)| → ∞, E is a pole. It is equivalent to require G−1(E) to
have a vanishing eigenvalue at the pole energy, where

G−1(E)C(E) = 0C(E). (31)

This condition implies that

[ε+ Σ(E)] C(E) = EC(E). (32)

The latter expression may be rewritten as

[F + Σ′(E)] C(E) = EC(E). (33)



Here, an effective one–electron operator matrix has Fock and energy–dependent,
self–energy terms. From this matrix expression, one may abstract one–electron
equations in terms of the generalized Fock and energy–dependent, self–energy
operators:

[F + Σ′(E)]φDyson ≡ Γ(E)φDyson = EφDyson. (34)

When E is an eigenvalue of Γ(E), E is a pole. The corresponding operator,
Γ(E), is nonlocal and energy-dependent. In its exact limit, it incorporates all
relaxation and differential correlation corrections to canonical orbital energies.

A normalized DO is determined by an eigenvector of Γ(Epole) according to

ψDyson(x) =
∑
r

φr(x)Cr(Epole), (35)

and satisfies
〈ψDyson|ψDyson〉 = 1 (36)

provided C†C = 1. The normalization factor,
√
P , occurring in

φDyson(x) =
√
PψDyson (37)

is related to the pole strength, P , such that

P =
[
1−C†(Epole)

dΣ(E)
dE

|E=Epole C(Epole)
]−1

. (38)

When Σ(E) is neglected, P equals unity for each Koopmans final state.
Results on valence ionization energies of closed–shell molecules generally in-

dicate that off–diagonal elements of the self–energy matrix in the canonical basis
are small and have a negligible effect on poles and DOs. Diagonal self–energy
approximations explicitly neglect these matrix elements and, as a consequence
of equation 35, constrain the DOs to be equal to canonical orbitals. The associ-
ated pole search becomes especially easy, for the zeros of the diagonal elements
of the Dyson equation can be found by solving

E = εp + Σpp(E). (39)

The usual initial guess, εp + Σpp(εp), usually leads to convergence in three it-
erations. Relationships between diagonal self–energy approximations, the tran-
sition operator method, the ∆SCF approximation and perturbative treatments
of electron binding energies have been analyzed in detail [17, 18].

5 Approximations

5.1 Perturbative Σ(E) for Large Molecules

The usual choice of superoperator metric starts from a HF wavefunction plus
perturbative corrections [4, 5]:

(Y |Z) = 〈HF |(1 + T †)[Y †, Z]+(1 + T )|HF 〉 (40)



where
T = T

(1)
2 + T

(2)
1 + T

(2)
2 + T

(2)
3 + T

(2)
4 + · · · . (41)

The level of excitation in T
(f)
e is indicated by the subscript, e, and the order

is defined by the superscript, f . For example, second–order, triple excitations
are represented by T

(2)
3 . Coupled–cluster parametrizations of this metric [19]

suggest an alternative form:

(Y |Z) = 〈HF |e−T [Y †, Z]+eT |HF 〉. (42)

This choice produces asymmetric superoperator matrices. A simplified final
form for the self–energy matrix that does not require optimization of cluster
amplitudes is sought for large molecules; the approximation

eT ≈ 1 + T
(1)
2 (43)

therefore is made.
With this choice, several third–order terms that appeared with the usual

metric are eliminated. The new self–energy matrix in third order is asymmetric
and is expressed by

Σ(E) = (a|Ĥf3)(1){E1− (f3|Ĥf3)(0)}−1(f3|Ĥa)(1)

+(a|Ĥf3)(1){E1− (f3|Ĥf3)(0)}−1(f3|Ĥa)(2)

+(a|Ĥf3)(1){E1− (f3|Ĥf3)(0)}−1(f3|V̂ f3)(1){E1− (f3|Ĥf3)(0)}−1(f3|Ĥa)(1),
(44)

where f3 is a vector whose elements are 2h–p or 2p–h operators. Note that
energy–independent terms in the third–order, self–energy matrix are not re-
tained.

Two observations suggest additional economies. First, numerical results for
ionization energies show that third–order, 2p–h terms in equation 44 are small
relative to their 2h–p counterparts. Terms arising from these operators are
important in second order, however. Second, evaluation of the third–order, 2p–h
terms requires integrals with four virtual indices. Because of the large number of
these integrals that typically is generated, their storage is often avoided through
semidirect algorithms [20]. Contractions involving integrals with four virtual
indices remain the bottleneck in third–order calculations.

Neglect of third–order, 2p–h terms produces this self–energy matrix:

Σ(E)pq =
1
2

∑
iab

〈pi||ab〉〈ab||qi〉
E + εi − εa − εb

+
1
2

∑
aij

〈pa||ij〉Wqaij

E + εa − εi − εj
+

1
2

∑
aij

Upaij(E)〈ij||qa〉
E + εa − εi − εj

(45)



where i, j, k are occupied indices, a, b, c are virtual indices, p, q are general in-
dices,

Wqaij = 〈qa||ij〉+ 1
2

∑
bc

〈qa||bc〉〈bc||ij〉
εi + εj − εb − εc

+ (1−Pij)
∑
bk

〈qk||bi〉〈ba||jk〉
εj + εk − εa − εb

(46)

and

Upaij(E) = −1
2

∑
kl

〈pa||kl〉〈kl||ij〉
E + εa − εk − εl

− (1− Pij)
∑
bk

〈pb||jk〉〈ak||bi〉
E + εb − εj − εk

. (47)

This partial third–order expression has been designated by the abbreviation P3
[21].

Comparison of the self–energy matrix elements of equation 45 with older,
related methods [7, 15] reveals the advantages of the P3 approximation. Among
the intermediates required in third order is

Vpiab(E) =
1
2

∑
cd

〈pi||cd〉〈cd||ab〉
E + εi − εc − εd

+ (1− Pab)
∑
jc

〈pj||bc〉〈ic||ja〉
E + εj − εb − εc

. (48)

The first summation requires electron repulsion integrals with four virtual in-
dices. Efficient algorithms that avoid the storage of these integrals have been
discussed in detail [20]. For every orbital index, p, this OV4 contraction must
be repeated for each energy considered in the pole search; it is usually the
computational bottleneck.

In the diagonal, P3 approximation, nondiagonal elements of the self–energy
matrix are neglected. The first contraction in equation 46 is the most demand-
ing, for it has an arithmetic scaling factor of O2V3. This step also requires
electron repulsion integrals with one occupied and three virtual indices. The W
intermediate is energy–independent and must be evaluated once only for each
ionization energy of interest.

The diagonal, P3 self–energy was compared with older propagator methods
for 19 ionization energies of six closed–shell molecules with the correlation–
consistent, triple ζ basis [21]. The average absolute errors in eV were: 1.34 for
Koopmans’s theorem, 0.25 for 3+ (a method similar to ADC(3) [7]), 0.25 for
OVGF–B (a method based on a scaled, third–order self–energy [7]) and 0.19
for P3. The P3 procedure exhibits accuracy at least as good as that of other
methods, superior arithmetic scaling and no need for electron repulsion integrals
with four virtual indices.

5.2 Renormalized Methods

According to equation 15, eigenvalues of the superoperator Hamiltonian matrix,
Ĥ, are poles (electron binding energies) of the electron propagator. Several
renormalized methods can be defined in terms of approximate Ĥ matrices. The



latter are defined by the operator manifold and the reference state employed in
the superoperator metric. Renormalized spin–orbitals may be generated accord-
ing to the so–called Brueckner doubles (BD) recipe [22]. Here, a coupled–cluster
singles and doubles wavefunction is reduced to the form

|BD〉 = eT2 |Brueckner〉 (49)

by rotation of the orbitals in the reference determinant, |Brueckner〉. A conve-
nient reference metric is given by

(Y |Z) = 〈Brueckner|
[
Y †, Z

]
+
eT2 |Brueckner〉. (50)

To take advantage of procedures used for configuration interaction calculations,
eigenvalues of the symmetrized matrices, 1

2{Ĥ + Ĥ†}, are computed.
This choice requires only one major modification in programs written for

canonical, HF orbitals. In the Brueckner orbital basis, elements of the Ĥh,p and
Ĥp,h blocks of the superoperator Hamiltonian matrix no longer vanish. Double
replacement amplitudes from T2 replace their first–order counterparts that are
used in the P3 method. Orbitals that diagonalize the Ĥh,h and Ĥp,p blocks
may be chosen without altering the BD ansatz. Electron repulsion integrals and
diagonal elements of the generalized Fock matrix in the approximate Brueckner
orbital basis therefore replace integrals and orbital energies in the canonical, HF
basis. The Ĥ matrix employed in calculations described below has the form

Ĥ =


Ĥh,h Ĥh,p Ĥh,2hp Ĥh,2ph

Ĥp,h Ĥp,p Ĥp,2hp Ĥp,2ph

Ĥ2hp,h Ĥ2hp,p Ĥ2hp,2hp Ĥ2hp,2ph

Ĥ2ph,h Ĥ2ph,p Ĥ2ph,2hp Ĥ2ph,2ph

 . (51)

An additional approximation is introduced here: elements of the Ĥ2hp,2ph block
are neglected. Since this block vanishes identically when HF reference states
are used, the present approximation may be regarded as an improvement to
the so–called 2p–h TDA [7, 23, 24] method with orbital and reference–state
renormalizations [25, 26, 27].

6 Applications

6.1 Benzopyrene

Benzo[a]pyrene, a molecule with five, fused, hexagonal rings, is among the most
carcinogenic of the polycyclic aromatic hydrocarbons (PAHs). Such biological
activity may be related to the electronic structure of benzo[a]pyrene and its
metabolites. Ionization energies of these molecules therefore have been investi-
gated with photoelectron spectroscopy [28].



The diagonal, P3 self–energy is ideal for interpreting these experiments
[29]. All occupied MOs except for 1s–like core orbitals were included in elec-
tron propagator calculations performed with the 6-311G(d,p) basis [30]. Pole
strengths (P ), listed immediately beneath P3 ionization energies in Table I, in-
dicate that the Koopmans description of each final state is qualitatively valid,
for shakeup character is minor. A symmetry–adapted, semidirect algorithm was
employed [20]. Programs are incorporated in a modified version of GAUSSIAN–
94 [31]. Because of limitations on memory and disk storage, virtual orbitals were
dropped in the P3 calculations. A total of 310 occupied and virtual valence or-
bitals was retained; only virtual orbitals with energies above 2.71 atomic units
were dropped.

Table I: Benzo[a]pyrene Ionization Energies (eV)

Orbital KT P3 Expt. Orbital
P [32] Type

10a′′ 6.90 7.02 7.12 π
0.87

9a′′ 7.94 7.93 8.05 π
0.86

8a′′ 9.04 8.67 8.79 π
0.85

7a′′ 9.43 8.95 8.97 π
0.86

6a′′ 10.18 9.49 9.51 π
0.84

5a′′ 10.77 9.89 9.95 π
0.83

56a′ 12.51 10.84 σ
0.88

In the photoelectron spectrum [32, 33], the sharp peak at 7.12 eV is followed
by four regularly spaced peaks of lesser intensity up to 7.7 eV. This vibrational
structure is due to the delocalized nature of the corresponding DO. There are
no especially large amplitudes in the so–called bay region. A similar pattern of
results obtains for the second cationic state. In the spectrum, a sharp peak at
8.00 eV exhibits a subsidiary peak at 8.2 eV that is succeeded by less distinct
shoulders up to 8.4 eV. These features also are due to vibrational excitation
in the second electronic state. Larger discrepancies between uncorrelated and
correlated results occur for the third final state. P3 calculations with the full
complement of virtual orbitals will approach 8.7 eV, in excellent agreement with
experiment. Correlation effects are quantitatively important for the fourth and
fifth final states as well. In the experimental report, the highest energy feature
that was assigned occurred at 9.95 eV. No attempt was made therein to assign



higher energy features to specific electronic states. Around 10.5 eV, the lowest
discernible features appear. A clearly separable local maximum occurs around
10.9 eV. This feature is part of a broad system with many maxima up to 12.0
eV. This system, in turn, is followed by several, broad, jagged features up to 16
eV. According to the P3 results, the first final state with a σ hole occurs be-
tween 10.9–11.0 eV. (This estimate is based on the observation that inclusion of
more virtual orbitals increases the predicted ionization energies.) The extensive
nuclear rearrangements induced by removal of a σ electron may account for the
structure seen on the low energy side of the 10.9–11.0 eV estimate.

6.2 1,10 Phenanthroline

Diaza derivatives of PAHs possess unique chelating properties, display extensive
biological activity and are widely used in analytical chemistry, pharmacology
and molecular biology [34]. These molecules have been thoroughly scrutinized
for antitumor activity, carcinogenicity and mutagenicity. The ability of some
phenanthrolines to inhibit electron transfer in biological systems has attracted
attention. Derivatives of phenanthrolines have been studied for their potential
anti–viral (including anti–HIV) properties.

Ionization energies from molecules with adjacent nitrogen lone pairs usu-
ally are assigned with the aid of a simple, two–level splitting model. Here,
two lone–pair hybrids produce two combinations, the out–of–phase σN− and
the in–phase σN+. Relative positions are determined by “through–space” or
“through–bond” interactions. Photoelectron spectra of molecules with two aza
centers usually are assumed to have two bands corresponding to ionizations from
nitrogen lone–pair orbitals. Unfortunately, this concept may lead to erroneous
assignments, especially when bands overlap. In azabenzenes, numerous final
state misorderings from Koopmans’s theorem have been revealed [35].

Because the two nitrogen atoms in 1,10 phenanthroline are separated by
less than 3 Å, electron correlation has important consequences for the order of
final states. The first ionization energy relates to a π MO with a distribution
pattern similar to that of the parent hydrocarbon, phenanthrene. The P3 re-
sult shown in Table II is very close to the experimental value [34]. The second
ionization band with the experimental maximum at ∼8.8 eV represents the over-
lapping of two cationic states, π2

2A2 and the out–of–phase, nitrogen lone–pair
hybrid combination, 2B2. A strong resemblance obtains between the former’s
MO and its π2 counterpart in phenanthrene. The MO 19b2, corresponding to
the third ionization, while having some C–C bonding character, consists chiefly
of non–bonding, lone–pair hybrids. In this case, the MO with an antibonding
combination of lone–pair hybrids lies above its bonding counterpart. P3 ion-
ization energies obtained for these states are 8.67 and 8.87 eV, respectively. In
the spectrum, there is a large peak at 8.8 eV with a shoulder at 8.6–8.7 eV.
Both features are explained by these calculations. The fourth ionization oc-
curs from an MO dominated by an in–phase combination of lone–pair hybrids,



21a1. P3 results are in excellent agreement with experiment. An assignment
made on the basis of INDO calculations is incorrect [36]. The peak at ∼8.4 eV
was assigned to an out–of–phase combination of nitrogen lone–pair hybrids; the
in–phase combination was assigned to a feature at 11.76 eV. Our calculations
predict the energy splitting of the two lone–pair levels to be only 0.4–0.5 eV and
place these levels much closer to the first two π levels. Correlation corrections
to Koopmans’s theorem must be included in calculations that are performed to
interpret this spectrum. The next three ionizations pertain to π cationic states
and the calculated energies are in good agreement with the experimental values.

Table II: 1,10–Phenanthroline Ionization Energies (eV)

State KT P3 Expt. [36] Orbital
2B1 8.29 8.39 8.35 π1
2A2 8.62 8.67 8.82 π2
2B2 10.82 8.87 σN−
2A1 11.28 9.33 9.39 σN+
2A2 10.62 10.17 10.11 π3
2B1 10.86 10.37 10.47 π4
2B1 12.49 11.47 11.16 π5

6.3 Anions

Anion photoelectron spectroscopy [37, 38] and photodetachment techniques [39]
provide accurate information on electron detachment energies of negative ions.
Ten closed–shell anions considered here exhibit sharp peaks, indicative of minor
or vanishing final–state nuclear rearrangements, in their photoelectron spectra.
Comparisons between theory and experiment are straightforward, for differ-
ences between vertical and adiabatic electron detachment energies (VEDEs and
AEDEs, respectively) are small.

These data are ideal tests for renormalized ab initio methods. Perturbative
propagator methods have yielded poor agreement with experiment for F− and
OH− [40]. For example, OVGF predictions for F− and OH− with a polarized,
triple ζ basis augmented with diffuse functions are 5.00 and 2.86 eV, respectively.

Table III displays VEDEs obtained with the Brueckner–reference methods
discussed in Section 5.2 and augmented, correlation–consistent, triple–ζ basis
sets [41]. AEDEs include zero–point energy differences and relaxation energies
pertaining to geometrical relaxation on the neutral’s potential energy surface.
The average absolute error with respect to experiment is 0.05 eV [26].



Table III: Electron Detachment Energies (eV)

Anion Final State VEDE AEDE Expt. [26]
F− 2P 3.54 3.40

OH− 2Π 1.85 1.85 1.83
NH−2

2B1 0.68 0.70 0.77 ± 0.005
Cl− 2P 3.61 3.61
SH− 2Π 2.29 2.30 2.32 ± 0.01
PH−2

2B1 1.20 1.22 1.27 ± 0.01
BO− 2Σ+ 2.57 2.54 2.51 ± 0.01
CN− 2Σ+ 3.83 3.83 3.86
AlO− 2Σ+ 2.72 2.69 2.60 ± 0.03
AlS− 2Σ+ 2.74 2.68 2.60 ± 0.03

For F−, still the most difficult case, the pole strength is 0.90. The 2p orbital
in the reference determinant dominates the normalized DO with a coefficient of
0.9997. In the U vector of equation 17, the a†3pβa2pαa2pβ contribution ≈ 0.1.

For OH−, the pole strength is 0.89 and the 1π coefficient in the normalized
DO is 0.9994. A 2h–p operator, a†2πβa1παa1πβ , also has a U element that is
approximately 0.1.

Similar results follow for the remaining anions with eight valence electrons.
Pole strengths are between 0.88 and 0.90 for NH−2 , SH− and PH−2 . A somewhat
larger value, 0.95, obtains for Cl−. For NH−2 and PH−2 , there are 2h–p U
elements for both final states with absolute values between 0.1 and 0.2. The
operators in question have the form a†tb1βanb1αanb1β or a†tb1βanb1αama1β , where
n and m are labels for occupied orbitals and t is an unoccupied orbital label.

For diatomics with ten valence electrons, pole strengths lie between 0.86
and 0.89. DOs are dominated by a single occupied orbital in all cases. In the
normalized DO for the 2Σ+ state of AlO, there are other contributions with
coefficients near 0.02. For the 2Σ+ states of BO and AlO, certain a†tσβanσαanσβ
operators have U elements that are approximately 0.1. Recent experimental
work has produced a revised figure, 2.508 ± 0.008 eV, for the electron affinity of
BO [42] and the entry in Table III is in excellent agreement. Similar agreement
occurs for the electron affinities of CN, AlO and AlS.

6.4 Ozone

Applications of electron propagator methods with a single–determinant refer-
ence state seldom have been attempted for biradicals such as ozone, for operator
space partitionings and perturbative corrections therein assume the dominance
of a lone configuration in the reference state. Assignments of the three lowest
cationic states were inferred from asymmetry parameters measured with Ne I,
He I and He II radiation sources [43].



Correlated variational calculations with small basis sets provided qualitative
descriptions of the cationic states in terms of symmetry–adapted or localized
orbitals. Hay, Dunning and Goddard’s GVB–CI description of ground state O3

consists of a 6a2
14b2

21b2
11a2

2 reference and a 1a2
2 → 2b2

1 double excitation [44].
Here, a singlet–coupled, biradical pair of electrons is placed on two pπ orbitals
centered on terminal oxygens. Application of 4b2, 6a1 or 1a2 annihilation op-
erators to this state produces a valence–bond description of the cations where
holes occur in terminal–atom π or lone–pair σ orbitals. Kosugi, Kuroda and
Iwata emphasized the importance of 2h–p configurations in describing the 2A1

and 2B2 states [45]. Malmquist, Ågren and Roos observed the importance of
single and double replacements from 1b1 to 2b1 for the 2A2 state [46].

OVGF calculations reversed the order of the 2A2 and 2B2 states [47]. Fock–
space, multi–reference, coupled–cluster calculations with a 5s4p2d basis ob-
tained excellent agreement with experiment [48]. Recent multiconfigurational,
spin–tensor, electron propagator calculations were based on an active orbital
space defined by the irreducible representations of the three highest occupied
and three lowest unoccupied HF orbitals [49]. Six electrons are assigned to an
active space consisting of 6a1, 4b2, 1a2, 2b1, 7a1 and 5b2 orbitals. (Symmetry
adaptation of 2p atomic orbitals produces a space that also contains 5a1, 1b1 and
3b2 constituents.) The results are relatively insensitive to basis improvements
and are in excellent agreement with experiment.

The Brueckner–reference method discussed in Section 5.2 and the cc–pvqz
basis set without g functions were applied to the vertical ionization energies of
ozone [27]. Errors in the results of Table IV lie between 0.07 and 0.17 eV; pole
strengths (P) displayed beside the ionization energies are approximately equal
to 0.9. Examination of cluster amplitudes and elements of U vectors for each
ionization energy reveals the reasons for the success of the present calculations.
The cluster operator amplitude for the double excitation to 2b2

1 from 1a2
2 is

approximately 0.19. For each final state, the most important operator pertains
to an occupied spin–orbital in the reference determinant, but there are signif-
icant coefficients for 2h–p operators. For the 2A2 case, a balanced description
of ground state correlation requires inclusion of a 2p–h operator as well. The
2b1 orbital’s creation or annihilation operator is present in each of the 2h–p and
2p–h operators listed in Table IV. Pole strengths are approximately equal to
the square of the principal h operator coefficient and contributions by other h
operators are relatively small.



Table IV: Ozone Ionization Energies (eV) and Operators

n ν ν Type |Uν,n| P Pole Expt. [43]
2A1 (6a1α) h 0.93 0.88 12.66 12.73

(2b1β)†(4b2α)(1a2β) 2h–p 0.14
2B2 (4b2α) h 0.93 0.88 12.83 13.00

(2b1β)†(6a1α)(1a2β) 2h–p 0.14
2A2 (1a2α) h 0.93 0.87 13.65 13.54

(2b1β)†(1b1α)(1a2β) 2h–p 0.14
(1a2β)†(2b1α)(2b1β) 2p–h 0.18

7 Conclusions

Electron propagator theory generates a one–electron picture of electronic struc-
ture that includes electron correlation. One–electron energies may be obtained
reliably for closed–shell molecules with the P3 method and more complex cor-
relation effects can be treated with renormalized reference states and orbitals.
To each electron binding energy, there corresponds a Dyson orbital that is a
correlated generalization of a canonical molecular orbital. Electron propaga-
tor theory enables interpretation of precise ab initio calculations in terms of
one–electron concepts.
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