Electron Transfer Dissociation of Multiply-charged Peptides: The Roles of Total Charge and Identities of Charge-bearing Sites

Scott McLuckey; Yu Xia; Xiarong Liang; Hongling Han; Joshua Emory; Dave Erickson

> Purdue University Department of Chemistry West Lafayette, IN, USA

2007 Workshop on Molecular Anions and Electron-Molecule Interactions, Ken Jordan Fest

Protein Identification/Characterization:

Experimental approach:

Macro-ions are studied in an electrodynamic ion trap. Important characteristics of this approach include:

Quadrupole ion trap

- High bath gas pressures (1 mtorr) and variable temperatures to provide thermal and near thermal reaction conditions.
- Ion storage and manipulation capabilities to provide for high experimental flexibility including kinetics measurements.
- Dual polarity ion storage capability to enable the study of ion/ion reactions.

Types of Single Ion/Ion Encounters:

• Direct Hard-Sphere (Intimate) Collision

- Proton or Electron Transfer at a Crossing
 H+
 - The electrical fields are strong enough to pull protons off at distances of around 100Å
- Formation of Coulombically bound orbital complexes

Orbit may bring reactants into close enough proximity for reaction.
 Orbits can collapse due to tidal effect and/or collisions.

Cross-sections for the limiting cases:

• Direct Hard-Sphere Collision b_{h-s}^2

$$b_{h-s}^{2} = r_{h-s}^{2} \left[1 + \frac{2Z_{1}Z_{2}e^{2}}{4\pi\varepsilon_{0}r_{h-s}\mu_{v}^{2}} \right]$$

• Proton Hopping $r_{transfer} range = r_{hop} to(r_{hop} + r_{h-s})$ $b_{transfer}^2 = r_{transfer}^2 \left[1 + \frac{2Z_1 Z_2 e^2}{4\pi \varepsilon_0 r_{transfer} \mu v^2} \right]$ $r_{hop} \cong \frac{Z_1 Z_2 e^2}{4\pi \varepsilon_0 \Delta H_{t-s}}$

$$b_{orb.}^2 \approx \frac{4Z_1^2 Z_2^2 e^4}{\left(4\pi \varepsilon_0 \mu v^2\right)^2}$$

Predicted rate dependencies of different models on z

Ubiquitin $(M+9H)^{9+}/I^{-}$ (25 ms)

Dynamics of Protein/Protein Reactions

Low eccentricity orbit

r slowly decreases as KE is removed by tidal effects, He collisions
ions do not interact until KE is low
acid/base and non-covalent interactions bind chains together High eccentricity orbit

- •KE is highest when r is low
- •when protons transfer, Coulombic attraction is reduced and ions separate

 $r \equiv$ distance of closest approach

A "tidal" mechanism for ion/ion capture, Xslational $\rightarrow \varepsilon$ transfer

Factors in ETD:

- Nature of the anion: EA, FCFs
- Nature of the cation:
 - Identities of charge bearing sites
 - Total charge
 - High order structure
 - PTMs
 - -SS-
 - Phosphate
 - Sugars
 - Etc.

Reaction enthalpies for PT and ET reactions with model cations:

	PA (kcal/mol)	EA (kcal/mol)	$\Delta Hrxn by PT_1/PT_2^{b} (kcal/mol)$	Δ Hrxn by ET ₁ /ET ₂ ^b (kcal/mol)	relative exothermicity ^b $\Delta H_{PT} - \Delta H_{ET}$ (kcal/mol)
Guanidine(+)	237.7 (neutral)	92.8 (cation)			
Glycine (+)	204.3 (neutral)	122.6 (cation)			
SO ₂ -•	327.2 (R ⁻)	27.2 (R)	-89.5/-122.9	-65.6/-95.4	-23.9/-27.5
O ₃ -•	342.4 (R ⁻)	49.7 (R)	-104.7/-138.1	-43.1/-72.9	-61.6/-65.2
S ₃ -•	315.9 (R ⁻)	55.1 (R)	-78.2/-111.6	-37.7/-67.5	-40.5/-44.1
phNNph ^{-•} ^a	348.8 (R ⁻)	13.1 (R)	-111.1/-144.5	-79.7/-109.5	-31.4/-35
$SF_6^{-\bullet}$	345.1 (R ⁻)	29.2 (R)	-107.4/-140.8	-63.6/-93.4	-44/-47.4
CH ₃ COO-	345.9 (R ⁻)	77.4 (R)	-108.2/-141.6	-15.5/-45.2	-92.8/-96.4
I- c	314.3 (R ⁻)	70.6 (R)	-76.6/-110.0	-22.2/-52.0	-54.4/-58.0
CS ₂ -•	317.6 (R ⁻)	11.8 ° (R)	-79.9/-113.3	-81.0/-110.8	+1.1/-2.5

a. experimental values from FT-ICR bracketing method^[]]

b, c and d: the first number is calculated against guanidine and the 2nd number is calculated against glycine. e. experimental values from NIST webbook^[iii]

^{III} Ingemann, S.; Fokkens, R.H.; Nibbering, N.M.M. J. Org. Chem. **1991**, *5*6, 607-612.

III NIST Chemistry WebBook, NIST Standard Database 69, January, 2005, http://webbook.nist.gov/chemistry/

(KGAILKGAILR + 3H⁺)/A⁻

Reagent	Franck-Condon factor $\Sigma \equiv 0 \leq 10 \text{GeV}^2$	EA(R) (kcal/mol)	% ETD	
norbornodiene	1.1x10 ⁻²	5.6	7.2	
cis-stilbene	5.2x10 ⁻³	10.4	9.8	
0 ₂	9.7x10 ⁻¹	10.4	4.9	
CS ₂	4.9x10 ⁻⁵	11.8	< 0.01	•
azobenzene	1.8x10 ⁻¹	13.1	48.8	
fluoranthene	3.6x10 ⁻¹	14.5	37.4	
perylene	4.1x10 ⁻¹	22.4	20.9	
nitrobenzene	1.4x10 ⁻¹	23.0	14.7	
SF ₆	6.7x10 ⁻¹¹	24.2	< 0.01	•
SO ₂	4.6x10 ⁻¹	25.5	30.1	
m-dinitrobenzene	2.7x10 ⁻¹	38.3	26.6	
o-dinitrobenzene	1.2x10 ⁻⁴	38.3	17.2	
S ₂ O	3.5x10 ⁻¹	43.3	7.3	
SO ₃	6.9x10 ⁻⁸	43.8	< 0.01	•
p-dinitrobenzene	1.8x10 ⁻¹	46.1	16.4	
S ₃	5.2x10 ⁻¹	48.3	7.0	
0 ₃	3.8x10 ⁻¹	48.5	4.8	
NO ₂ •	2.3x10 ⁻¹	52.4	8.5	
1,3,5-trinitrobenzene	6.5x10 ⁻¹	60.6	7.9	
CO ₃	9.0x10 ⁻¹	62.0	< 0.01	•
I•	N/A	70.6	< 0.01	•
CH ₃ COO•	5.8x10 ⁻³	77.4	< 0.01	•
NO ₃ •	7.6x10 ⁻¹	90.8	< 0.01	•
[PDCH-F]•	1.3x10 ⁻³	96.2	< 0.01	•
H ₂ PO ₄	1.3x10 ⁻⁸	105.4	< 0.01	•
HSO ₄	4.9x10 ⁻²	109.5	< 0.01	•

Anion characteristics:

Favorable F-C factors EA of neutral not too high (<3 eV)

Thanks to Jamie Stearns and Tim Zwier for teaching us how to do the FCF calculations

Conclusions about nature of anion:

- ET becomes competitive with PT when EA reagent is not "too high" (< 3 eV) and when FCF are not "too low" (<10⁻²)
- Dipole-bound anions, Rydberg atoms should make good ET reagents...

Major Competing Channels in an ETD Expt.

Product Partitioning Definitions:

$$\% PT = \frac{\sum PT}{\sum PT + (ET, no D) + ETD} \times 100\%$$

$$\% ET = \% ET, no D + \% ETD$$

$$\% ET, no D = \frac{\sum ET, no D}{\sum PT + (ET, no D) + ETD} \times 100\%$$

$$\% ETD = \frac{\sum ETD}{\sum PT + (ET, no D) + ETD} \times 100\%$$

$$\% c, z/ETD = -\frac{\sum c, z}{\sum ETD} \times 100\%$$

$$\% side-chain/ETD = -\frac{\sum side-chain}{\sum ETD} \times 100\%$$

Factors in ETD:

- Nature of the anion: EA, FCFs
- Nature of the cation:
 - Identities of charge bearing sites
 - Total charge
 - High order structure
 - PTMs
 - -SS-
 - Phosphate
 - Sugars
 - Etc.

Peptide Label	Peptide Sequence	Peptide Label	Peptide Sequence
Peptide I	AGCK I TFTSC	Peptide VI	AGCKNFFWK TFTSC
Peptide II*	(q)AGCK I TFTSC	Peptide VII*	(q)AGCKNFFWK I TFTSC
Peptide III*	(q)AGCK(q) I TFTSC	Peptide VIII*	(q)AGCKNFFWK(q) TFTSC
Peptide IV	(q)AGCK(q) (q)TFTSC	Peptide IX*	(q)AGCKNFFWK(q) (q)TFTSC
Peptide V	(q)AGCK(q)-OMe (q)TFTSC-OMe	Peptide X	(q)AGCK(q)NFFWK(q) (q)TFTSC

* represents the peptides have a mixture of structures with combinations of TMAB on N-termini or lysine side chains. The corresponding peptide sequences stand for only one of the possible structures. q represents the TMAB group.

3+ Peptide Ions React with Azobenzene Anions					
Peptide	#H+,# TMAB	ETD%	ET, no D%	РТ%	SS, ETD%
Peptide I	3H+,0 TMAB	84	< 1	15	73
Peptide II	2H ⁺ ,1 TMAB	86	< 1	13	64
Peptide III	1H+,2 TMAB	64	5	31	33
Peptide IV	0H+,3 TMAB	81	< 1	18	78
Peptide V	0H+,3 TMAB	83	< 1	16	81

1 H⁺, 3 TMAB

	4+ Peptide Ions React with Azobenzene Anions				
Peptide	#H+,# TMAB	ETD%	ET, no D%	РТ%	SS, ETD%
Peptide VI	4H+,0 TMAB	84	3	13	30
Peptide VII	3H ⁺ ,1 TMAB	89	4	7	40
Peptide VIII	2H ⁺ ,2 TMAB	78	6	16	23
Peptide IX	1H+,3 TMAB	53	11	36	6
Peptide X	0H+,4 TMAB	63	11	26	57

Mechanisms for -SS- cleavage in ETD/ECD:

- Capture of e⁻ at protonated site, transfer of H• to -SS-
- Capture of e⁻ in Coulomb stabilized -SSantibonding orbital
- Capture of e⁻ in Rydberg orbital of charge site with subsequent transfer to -SS- anti-bonding orbital ("through bond electron transfer")

Acknowledgments

