#### Anions 2007 Azolide Ion Chemistry Park City, UT July, 2007

Takatoshi Ichino, Shuji Kato, Stephanie Villano John Stanton and Veronica M. Bierbaum Carl Lineberger

> JILA and Department of Chemistry University of Colorado



#### Happy 59<sup>th</sup>, Ken!!

Thank

## **Outline and Rationale**

Theory  $\iff$  experiment, synthesis,

- Selected ion flow tube (SIFT) and flowing afterglow
  - Gas phase synthesis of nitrogen-rich ions
  - Characterization of stability and structure
    - Reaction chemistry: acidity, collisional dissociation, structure
- Anion photoelectron spectroscopy

- Electron binding energies, ground state surface properties
- Low-lying excited states, structure, bond strengths
- Simulations of spectra using calculated structures
- Most B3LYP/6-311++G(d,p)
- Most useful with small geometry changes
- Can be problematic with moderate ones:  $CH_2^-$ ,  $SF_6^-$ , . . .
- Useful with very large changes: isomers, conformers, clusters
- Vibronic coupling raises complex issues (ignored here today)

#### Azolides and related anions



#### $C_{5-n}H_{5-n}N_n^-$

Pyrazole
N-methyl pyrazole
N-methyl imidazole
Vinyl diazomethyl anion
1*H*-1,2,3 triazole

(vibronic coupling)
(deprotonation site ID)
(selective reactions)
(conformational selectivity)
(everything happens)

Azolides formed by OH<sup>-</sup> deprotonation of azoles at known T

## Negative Ion Photoelectron Spectrometer

$$h_V + A^- \rightarrow A + e^-$$
 (KE)



#### Generation of M-1 Anions Via OH<sup>-</sup> Deprotonation





# $O_2^-$ and $O_2$ Electronic Potentials



#### O<sub>2</sub> photoelectron spectrum simulation K. Ervin, I. Anusiewicz, P. Skurski, J. Simons and WCL, J. Phys Chem. A 107, 8521 (2003)



## Pyrazole reactions with hydroxide





#### N-methyl-pyrazole reactions with OH<sup>-</sup>



#### N-methyl-5 -pyrazolide photoelectron spectrum



#### N-methyl-5 -pyrazolide photoelectron spectrum



#### N-methyl-imidazole reactions with OH<sup>-</sup>



# N-methyl imidazolide pe spectrum



How well does the simulation reproduce the detailed structure?





#### N-methyl imidazolide pes simulations





## Vinyldiazomethyl (vdm) anion chemistry



Produce the ring open form in reaction of allyl anion with  $N_2O$ .



Both E- and Z- conformations of vdm<sup>-</sup> may be present



# Vinyldiazomethyl anion chemistry



So we will use this capability to look at a complex reaction.

## 1H-1,2,3 triazole reaction with OH<sup>-</sup>



 $\begin{array}{rl} OH^{-} + C_2 N_3 H_3 \rightarrow (m/e \ 68)^{-} + H_2 O & major \ product \\ \rightarrow (m/e \ 40)^{-} + neutral(s) & smaller \end{array}$ 

Gentle CID on m/e 68 gives extensive m/e = 40 anion(s)

What are the identities, structures and energetics of these anions? Can we infer plausible reaction mechanisms?

# 1,2,3,triazolide imaging pe spectrum





# m/e = 68 photoelectron spectrum x 10 Photoelectron Counts 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 electron binding energy, eV

And there is the other m/e = 40 reaction product:

# m/e = 40 photoelectron spectrum



# Triazole N1 deprotonation by OH<sup>-</sup>



# 1,2,3,triazolide imaging pe spectrum



What are the identities, structures and formation mechanisms for the minor reaction products?

#### Indirect C4 deprotonation within complex



## C4 deprotonated product observed



# C4 attack by OH-leads to ring opening



# Both conformers are present



# C5 attack also leads to ring opening



## Improved m/e = 40 data



# Both m/e = 40 products are present



# In Conclusion . .

 $\succ$  The combination of flowing afterglow ion chemistry and anion photoelectron spectroscopy can provide unique data on the structure, energetics and reactions of highly unstable species.

# >HAPPY BIRTHDAY, KEN!!!!