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Outline and Rationale

. Theory <= experiment, synthesis,
 Selected ion flow tube (SIFT) and flowing afterglow

- Gas phase synthesis of nitrogen-rich ions

- Characterization of stability and structure
- Reaction chemistry: acidity, collisional dissociation, structure

* Anion photoelectron spectroscopy

- Electron binding energies, ground state surface properties
Low-lying excited states, structure, bond strengths
Simulations of spectra using calculated structures
Most B3LYP/6-311++6(d,p)

Most useful with small geometry changes

Can be problematic with moderate ones: CH,”, SF,”, . . .
Useful with very large changes: isomers, conformers, clusters
Vibronic coupling raises complex issues (ignored here today)




Azolides and related anions
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C..H

»>Pyrazole (vibronic coupling)
»N-methyl pyrazole (deprotonation site ID)
»N-methyl imidazole (selective reactions)
»Vinyl diazomethyl anion (conformational selectivity)
»>1H-1,2,3 triazole (everything happens)
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Azolides formed by OH™ deprotonation of azoles at known T




Negative Ion Photoelectron Spectrometer

hv+ A~ > A + e~ (KE)

Roots Pump

ExB
Mass Filter

LN2 jacket \
uv laser

351 nm




Generation of M-1 Anions Via OH~ Deprotonation
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Note m/e = 40 second product
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Negative Ion Photoelectron Spectroscopy
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> Intensities governed by Franck-Condon factors

> Instrument resolution is 5 meV (40 cm-! or 0O.1kcal/mol)

» AS= t+ 1 selection rule

> Use DFT calculations and full FCF simulation to compare with exp.




O, and O, Electronic Potentials

1.0 7X| 3.0
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How well can one fit the observed photoelectron spectrum
by optimizing O, properties: r,, ®,, S-O, and EA?




O%‘ Ehotoelectron spectrum simulation
N =

vin, |. Anusiewicz, P. Skurski, J. Simons and WCL,
J. Phys Chem. A 107, 8521 (2003)
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Pyrazole reactions with hydroxide
All are m/e =66  AnaH

-35 kcal/mol

pyrazole 1-pyrazolide
H

N1
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(\:4—01/3
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5-pyrazolide

+ 9.9 keal mol™?

3-pyrazolide
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4-pyrazolide

+ 6.6 kecal mol™?




pyrazolide anions photoelectron spectrum

1-pyrazolyl

5-pyrazolyl
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Test assignments by "blocking” N1 site with CH;.




N-methyl-pyrazole reactions with OH"
All are m/e =71

(IIH3 Aran0

-5.0 kcal mol™

+1.4 kcal
mol™’

C ‘/ +H,0  +7.9 kcal

O mol” -1

CH3

C‘/ +H0 +11.3 keal

mol’ -1




N-methyl-5 -pyrazolide photoelectron spectrum
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Simulation is convincing confirmation of C5 deprotonation.




N-methyl-5 -pyrazolide photoelectron spectrum
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What will happen when more reaction channels are open?




N-methyl-imidazole reactions with OH"
All are m/e =71

|CH 3 APXHHO

+ H,0 -2.5 kcal mol ™t

— \ / +H,O -1.7 keal molt

C_
H ho

cHy

H- /N\C@

, / +H,0  -0.9 keal mol™t
Yallis

CH;

N + Ho0

H.o.—~ /H
C\/C +15.5 kcal mol™
C_
J° %




N-methyl imidazolide pe spectrum
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How well does the simulation reproduce the detailed structure?




N-methyl imidazolide
expanded view of simulation & experiment
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But which anion structure(s) are present?




N-methyl imidazolide pes simulations
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N-methyl imidazolide pes simulations
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Only the C5 deprotopdtion product is pﬁesen’r in significant
yield, although all/three isomers are energetically accessible
What is the "blob” at lower eBE? Same mass. Ring open?
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Vinyldiazomethyl (vdm) anion chemistry

I collisional

C activation

H—c7 \/C/H — >  H,CCN™ + HCN
\

s +26 kcal mol!
N=N path a

_h; CN~ + H;CCN +4.4 kcal mol™!
pat

T H,CCCH™ + N; +31 kcal mol™!
path ¢

———>  H,CCHCNN"~ +40 kcal mol™?
path d

Produce the ring open form in reaction of allyl anion with N,O.
H. _H
\C/
[
HiNO ——> H ‘ﬁ_ + H,0
\

\
N

Both £- and Z- conformations of vdm™ may be present




Vinvldiazomethvl anion pes
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Can simulations differentiate between £- and Z- conformers




Vinyldiazomethyl anion chemistry
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So we will use this capability to look at a complex reaction.




1H-1,2,3 triazole reaction with OH"

OH  + C,N;H; — (m/e 68) + H,O major product
— (m/e 40)" + neutral(s) smaller

Gentle CID on m/e 68 gives extensive m/e = 40 anion(s)

What are the identities, structures and energetics
of these anions?
Can we infer plausible reaction mechanisms?




electron binding energy (eV)

SJUNOJ UOJ422|2040Y(

S
pus |
-
-
O
Q
Q.
7y
Q
Q.
O
.m
O
O
.m
\Y
9
O
N
.m
.
?’
™
N
|




355, 335, 320 nm images

m/e = 68
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But there is photoelectron signal at lower binding energies.




m/e = 68 photoelectron spectrum
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And there is the other m/e = 40 reaction product:




m/e = 40 photoelectron spectrum
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So how do we rationalize all these data?




Triazole N1 deprotonation by OH"




1,2,3,triazolide imaging pe spectrum
EA = 3.447(4) eV ]
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What are the identities, structures and
formation mechanisms for the minor reaction products?




Indirect C4 deprotonation within complex
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C4 deprotonated product observed
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C4 attack by OH leads to ring opening




Both conformers are present

m/e = 68 data




C5 attack also leads to ring opening

+ Ny ketenimine

\\\\\ + H20
— -4 V]




Improved m/e = 40 data
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Very likely two species in spectrum. Try to model them.




Both m/e = 40 products are present
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In Conclusion . . .

» The combination of flowing afterglow ion chemistry
and anion photoelectron spectroscopy can provide unique
data on the structure, energetics and reactions of highly

unstable species.
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