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The authors employ three numerical methods to explore the motion of low Reynolds number
swimmers, modeling the hydrodynamic interactions by means of the Oseen tensor approximation,
lattice Boltzmann simulations, and multiparticle collision dynamics. By applying the methods to a
three bead linear swimmer, for which exact results are known, the authors are able to compare and
assess the effectiveness of the different approaches. They then propose a new class of low Reynolds
number swimmers, generalized three bead swimmers that can change both the length of their arms
and the angle between them. Hence they suggest a design for a microstructure capable of moving
in three dimensions. They discuss multiple bead, linear microstructures and show that they are
highly efficient swimmers. They then turn to consider the swimming motion of elastic filaments.
Using multiparticle collision dynamics the authors show that a driven filament behaves in a
qualitatively similar way to the micron-scale swimming device recently demonstrated by Dreyfus
et al. �Nature �London� 437, 862 �2005��. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2434160�

I. INTRODUCTION

Microscopic and mesoscopic organisms such as bacteria
operate at length scales where swimming motion takes place
at very low Reynolds number.2 In his “scallop” theorem of
microscopic swimming Purcell argued that swimming strat-
egies can only be successful in this regime if they involve a
cyclic and non-time-reversible motion.3,4 The driving of he-
lically shaped bacterial flagella by a reversible rotary engine
and the beating motion of elastic rodlike flagella utilized by
eukaryotic cells are examples of biological mechanisms
which break time reversible invariance, thus allowing micro-
scopic organisms to move in a controlled fashion. In an ex-
citing recent development Dreyfus et al.1 have demonstrated
for the first time the controlled swimming motion of a fabri-
cated, micrometer size device.

Several authors have described models of swimmers at
low Reynolds number. Simple models which comprise
linked spheres or connected rods that move by changing the
distances or directions between the components are consid-
ered in Refs. 3 and 5–8. For one dimensional motion analytic
results for the swimming velocity and efficiency can be ob-
tained. Felderhof9 used the Oseen tensor formalism to model
microscopic swimmers using a bead spring model. Gauger
and Stark10 used a similar method to model the experimental
elastic filament of Dreyfus et al.1 Both of these approaches
are distinct from the one we use, in that the actuation of the
beads is described in terms of forces, whereas we define
swimming in terms of a predefined shape change. Propulsion
by a non-time-reversible pattern of surface distortions is ad-
dressed in Refs. 11–13. Another possible swimming mecha-
nism, mediated by an asymmetric distribution of reaction
products, is proposed in Ref. 14.

Increasingly, quantitative experiments on bacterial dy-

namics are appearing in the literature. Transient collective
motion has been observed in collections of swimming
cells.15 Bacteria near solid boundaries have been shown to
swim in circles16 and those near an obstacle to reverse their
swimming direction.17 Experiments have been performed to
determine the dependence of the chemotactic response of
Dictyostelium discoideum cells swimming in a concentration
gradient.18

Although simple, analytical models can provide consid-
erable help in understanding these results there are many
new features inherent or accessible in real biological systems
that remain to be explored. These include more complicated
swimming mechanisms, interactions between densely packed
swimmers, and the effect of boundaries and obstacles. There
will increasingly be a need to develop numerical methods to
probe the behavior of more complicated structures and situ-
ations where analytic approaches become intractable.

In numerical approaches published so far Hernandez-
Ortiz et al. have considered the swimming motion of a col-
lection of force dipoles.19 They observed the large scale co-
herent vortex motion that has been seen in experiments.
Ramachandran et al. have described swimmers, modeled as
force dipoles, interacting with a fluid described by a lattice
Boltzmann algorithm.20 Work on swimmers propelled by a
flexible filament modeled hydrodynamics through an aniso-
tropic friction coefficient.21,22

Our first aim in this paper is to explore new ways in
which simulation methods can be applied to the motion of
swimmers in a low Reynolds number solvent. We model the
hydrodynamic interactions by using the Oseen tensor
approximation,23 a lattice Boltzmann algorithm,24,25 and
multiparticle collision dynamics.26 The approaches are vali-
dated by solving the equations of motion for a linear three
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bead swimmer where an analytic solution is available for
comparison.7 We discuss the relative merits and demerits of
the three approaches.

Secondly, we extend the linear model to more general
three bead microstructures. We use an Oseen tensor approach
to demonstrate that they can move in a controlled fashion in
three dimensions by changing both the length of and the
angle between their arms and we discuss the efficiencies of
the various swimming modes. We also show that multibead
linear structures are highly efficient swimmers.

We then consider the swimming motion of driven elastic
filaments. Our model, solved using multiparticle collision
dynamics, mirrors the behavior of the swimming device in-
troduced by Dreyfus et al.1 In the Conclusions, we consider
future directions in which the modeling approaches might be
useful in understanding the swimming of bacteria and of
fabricated microstructures.

II. NUMERICAL APPROACHES

The swimmers we consider are composed of N spheres,
of fixed radius R, and with positions given by ri, where
i=1¯N. The spheres are linked by rods that are sufficiently
thin to neglect any hydrodynamic effect. Internal forces and
torques act to change the lengths and/or angles between the
rods, causing the swimmer to change shape. These shape
changes, when coupled to the fluid, lead to directed motion.
We now describe three different numerical approaches used
to simulate the fluid.

A. Oseen tensor

The Oseen tensor allows us to consider the hydro-
dynamic interaction, in the limit of zero Reynolds number,
between spheres that are spaced far apart �i.e., at distances
significantly larger than their radii, R�.23 A sphere pushed by
a force will move, and so set up a flow field. Any surround-
ing spheres will be advected with the resulting local fluid
velocity. Furthermore, since the Reynolds number is very
low, the time taken to set up the flow fields is much smaller
than that needed for a given sphere to move a significant
fraction of R.27 Therefore, the hydrodynamic interaction can
be approximated as instantaneous. Since the Stokes equation
�the Navier-Stokes equation without the inertial term, as is
appropriate in the low Reynolds number limit� is linear, the
velocity fields produced by each of the spheres simply add
up. This allows us to write

vi = �
j=1

N

HijF j , �1�

where vi is the velocity of sphere i and F j is the force on
sphere j. The Oseen tensor Hij is23

Hij = �I/6��R if i = j

�1/8���rij���I + rijrij/�rij�2� otherwise,
� �2�

where � is the fluid viscosity, I is the identity matrix, and
rij =r j −ri is the vector between spheres i and j. For a swim-
mer, the forces Fi are not external, but rather internal forces

mediated through the links that connect the spheres. They are
subject to the constraints

�
i=1

N

Fi = 0, �
i=1

N

Fi � ri = 0, �3�

which state that no external forces or torques act on the
swimmer.

The swimming motion is defined as a periodic shape
change and, from this information, the algorithm must deter-
mine the trajectory of the swimmer through the fluid. To
illustrate how this works we begin by considering a swimmer
whose motion is confined to a two dimensional plane. Figure
1 shows the procedure for the case N=3. At a given time t,
the position of the spheres ri is known, as shown in Fig. 1�a�.
The new shape of the swimmer at the next time step t+�t is
shown in Fig. 1�b�. We have chosen, for illustrative purposes,
a swimming step where the lengths of the two links connect-
ing sphere 3 have decreased.

The shape of the swimmer in Fig. 1�b� is defined through
the three quantities �r12� �, �r23� �, and �r31� �. However, this infor-
mation does not determine the absolute positions of the
spheres. To find these, it is necessary to enforce the conser-
vation conditions stated in Eq. �3�. This is performed in the
following iterative manner.

We take the first approximation for ri�t+�t� to be ri�.
This does not, in general, obey Eq. �3�, as will be apparent
below. Our aim is to move the spheres in such a way as
to successively improve the accuracy of Eq. �3�. To do
this, we consider translating the swimmer by a vector
�r= ��x ,�y�T, and rotating it about its center of mass by an
angle ��, as illustrated in Fig. 1�c�. Note that these opera-
tions do not change the shape of the swimmer. In doing this,
we introduce new position coordinates ri� defined by

FIG. 1. �a� The swimmer at time t. �b� The swimmer shape defined at time
t+�t. The lengths of the two links connecting sphere 3 have decreased. �c�
The shape at t+�t is translated by a vector �r and rotated by an angle ��
around its center of mass. These operations preserve the link lengths, thus
leaving the shape unchanged. The parameters �r and �� are chosen to
improve upon the accuracy of the constraints in Eq. �3�. This procedure is
performed iteratively until the necessary accuracy is achieved.
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ri� = rc.m.� + �r + R�ri� − rc.m.� � , �4�

where R is a clockwise rotation matrix around an angle ��
and rc.m.� =�i=1

N ri� /N is the center of mass position of the
swimmer. The unknown displacement �r and angle �� are
chosen to improve upon the accuracy of the constraints in
Eq. �3�. To calculate them we note that the velocity of sphere
i can be related to its displacement over time �t by

vi =
ri� − ri

�t
	

ri� − ri + �r + ���ri� − rc.m.� �r̂i
�

�t
. �5�

The unit vector r̂i
� lies in the direction a given point moves

under an infinitesimal rotation �which can be calculated by
rotating the vector ri�−rc.m.� by 90° clockwise and normaliz-
ing it�.

Substituting expression �5� into Eq. �1�, and numerically
inverting the resulting matrix equation using Gaussian elimi-
nation, we obtain an expression for the forces acting on each
sphere of the form

Fi = ai + bi�x + ci�y + di�� , �6�

where ai, bi, ci, and di are constant vectors. Using this, the
three constraints in Eq. �3� can, after some rearranging, be
written as

A
�x

�y

��
� = 
e1

e2

e3
� , �7�

where the matrix A and the column vector e are constants.
Finally, this matrix equation can be inverted to obtain the
values of �x, �y, and �� which are then used in Eq. �4� to
obtain a better approximation, r�, to the sphere positions at
time t+�t. Repeating the procedure gives rapid convergence
to the correct solution. Typically a single iteration improves
the accuracy of Eq. �3� by a factor of �10.

The approach is easily generalized to a swimmer moving
in three dimensions. In this case there are three displacement
parameters �x, �y, and �z, and three rotation parameters
��xy, ��yz, and ��zx �where, for example, ��xy is a rotation
in the x-y plane�. These six unknowns can be determined
using the six constraints in Eq. �3�. The method is the same
as above, except Eqs. �4�–�6� now contain the corresponding
extra terms, and A in Eq. �7� becomes a six by six matrix.

The computation for one time step scales as N3. For low
to moderate values of N the method is very fast. However,
for N�100, it quickly becomes very computationally inten-
sive.

B. Lattice Boltzmann

The lattice Boltzmann algorithm is now a widely used
mesoscopic modeling technique for simulating the behavior
of complex fluids.24,25 The method consists of an evolution
equation for a mass density distribution function fk�s , t�,
which can be considered as a simplified, discretized version
of Boltzmann’s transport equation. The distribution function
is defined at positions, s, which lie on a cubic lattice with a
distance �s between nearest neighbor points. Its value is up-
dated simultaneously and discretely in time, with time step

�t. We define c=�s /�t. The subscript k denotes a particular
velocity direction ek. The velocity vectors ek must be chosen
such that ek�t lies between lattice sites. In this study all simu-
lations are performed in three dimensions using a 15 velocity
model. This has a zero velocity vector e0= �0,0 ,0�, six near-
est neighbor velocity vectors e1–6 in the directions �±c ,0 ,0�,
�0, ±c ,0�, and �0,0 , ±c�, and eight velocity vectors e7–14 in
the diagonal directions �±c , ±c , ±c�. From fk we can calcu-
late the mass density � and momentum density �u,

� = �
k

fk, �u	 = �
k

fkek	. �8�

Evolution in time is given by

fk�s + ek�t,t + �t� = fk�s,t� −
1



�fk�s� − fk

eq�s�� , �9�

where we use the Bhatnagar-Gross-Krook approximation,
which uses a single parameter 
 to determine the rate of
relaxation toward equilibrium. A suitable choice for the equi-
librium distribution function is

fk
eq = �wk1 +

3ekau	

c2 +
9�ek	u	�2

2c4 −
3u2

2c2� , �10�

where the weight factors are w0= 2
9 , w1–6= 1

9 , and w7–14= 1
72.

Note that this distribution satisfies

�
k

fk
eq = �, �

k

fk
eqek	 = �u	, �11�

such that mass and momentum are conserved in time. This
can be seen by summing the zeroth and first velocity mo-
ments of Eq. �9�, and using the relations in Eq. �8�.

Applying the Chapman-Enskog expansion to the lattice
Boltzmann equation �Eq. �9�� �Ref. 24� gives the continuity
equation for the total density,

�t� + �	��u	� = 0 �12�

and the Navier-Stokes equation for the fluid momentum,

�t��u	� + ����u	u�� = − �	��cs
2� + �������u	� , �13�

where the kinematic viscosity is

� =
��s�2

3�t

 −

1

2
� �14�

and the speed of sound is cs=c /�3. At low Reynolds num-
bers the fluid is, to a very good approximation, incompress-
ible, i.e., � ·u=0. �In the simulations, the difference between
the maximum and minimum density within the system was
found to be no more than 0.04% of the average density.�

For simplicity, we do not explicitly consider a solid-fluid
interface but define the swimmer to comprise of the fluid
region within the spheres which make up the swimmer.28 The
swimmer-fluid interaction is incorporated into the lattice
Boltzmann algorithm after finding the fluid velocities in Eq.
�8�, but before calculating the equilibrium distributions in
Eq. �10�. This interaction is generated in three stages. Firstly,
the total linear and angular momenta of the swimmer are
calculated,
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P = �
j

� ju j, L = �
j

s j � � ju j , �15�

where the sum j runs over all the lattice sites contained
within the swimmer. Secondly, the new positions of the
spheres are calculated. This procedure is analogous to that
described for the Oseen tensor method in Sec. II A. In this,
we know the positions of the spheres at time t and the swim-
mer shape at time t+�t. The algorithm works out how this
new shape is oriented with respect to the original, such that
linear and angular momenta are conserved, i.e.,

�
i

mivi = P, �
i

ri � mivi = L , �16�

where mi=� j� j and

vi =
ri�t + �t� − ri�t�

�t
�17�

are the mass and velocity of sphere i, respectively. Thirdly,
the motion of the swimmer is coupled back to the fluid.
Lattice sites within a given sphere are set to the velocity of
that sphere, i.e., u j =vi, s j� sphere i. These updated veloci-
ties are then used in calculating the equilibrium distributions
�Eq. �10��. Through repeated iteration of the lattice Boltz-
mann equation �Eq. �9��, the fluid within and immediately
adjacent to the spheres is strongly coupled to move with the
same velocity as the spheres, thus giving the correct bound-
ary conditions.

To avoid unwanted lattice effects, the radius R of each
sphere must be sufficiently large to accurately resolve its
shape on the cubic grid. In this study we choose R=3�s, such
that each sphere contains approximately 113 lattice sites.
Note that in this procedure we neglect the effect of rotation
on the spheres, assuming that all parts of a given sphere
travel at the same velocity. This assumption is justified be-
cause the hydrodynamic interactions between rotating
spheres are rather weak. �The Oseen tensor �Eq. �2�� decays
as r−1, whereas the flow field around a rotating sphere decays
at a much faster rate of r−3�. In the case of modeling more
than one swimmer, it is necessary to add hard core potentials
between spheres to prevent them from overlapping.

C. Multiparticle collision dynamics

An alternative mesoscale approach, which solves the
equations of fluctuating hydrodynamics, is the multiparticle
collision dynamics �also known as stochastic rotation dy-
namics� algorithm introduced by Malevanets and Kapral.26

The fluid is represented by a large number of pointlike par-
ticles of mass m, with position rk�t�, and velocity vk�t� at
time t, where k is the particle index. The particles move in
continuous space, and at discrete time intervals, �t. Particle
positions are updated according to

rk�t + �t� = rk�t� + vk�t��t . �18�

At each time step the particles also undergo a multiparticle
collision that locally conserves mass, momentum, and en-
ergy. To perform the collision, the simulation box is divided
into a grid of cubic cells, with sides of length a. The average
number of particles per cell will be denoted by . The ve-

locities of the particles in each cell are then rotated about the
center of mass velocity of the cell, vc.m.,

vk�t + �t� = vc.m.�t� + R�vk�t� − vc.m.�t�� . �19�

R is a rotation matrix through a fixed angle, 	, about an axis
that is generated randomly for each cell in the simulation at
each time step. The position of the cubic grid is chosen ran-
domly at each time step—this leads to substantially im-
proved Galilean invariance in the algorithm.29 In the con-
tinuum limit, the multiparticle collision dynamics algorithm
recovers the thermohydrodynamic equations of motion and
thus acts as a Navier-Stokes solver. Conveniently, the depen-
dence of the transport coefficients of the fluid on the simu-
lation parameters is known analytically.30,31 Thus, it is a rela-
tively simple task to choose values that result in a low
Reynolds number fluid.

We couple a swimmer to the multiparticle collision dy-
namics solvent by considering it to be composed of a number
of particles, and including these solute particles in the sol-
vent collision step �Eq. �19��. In this way the swimming
microstructure can exchange momentum with the solvent. In
general, the equations of motion of the microstructure are
solved using a velocity Verlet molecular dynamics algorithm.
Precise details of how specific swimmers are dealt with using
this approach are given in the later sections of the paper.

III. LINEAR THREE SPHERE SWIMMER

Recently, Najafi and Golestanian7 proposed a one dimen-
sional swimmer comprising three connected spheres. Their
model is perhaps the simplest example of a controlled, cyclic
motion that breaks time reversibility. The swimmer consists
of a central sphere that is connected to two other spheres by
arms that are separated by an angle of 180°, are of negligible
thickness, and whose length can be changed by, for example,
the action of engines located on the central sphere. The mi-
crostructure moves by shortening and extending the lengths
of the arms in a periodic and time irreversible manner, as
shown in Fig. 2. The relevant parameters for this model are
D, the distance between the central sphere and an outer
sphere at the maximum arm length, �, the distance the arm
shortens, W, the speed at which the arms change their
lengths, and R, the radius of each sphere. The result of this
cyclic, time irreversible motion is a net translation of the
swimmer along the line linking the three spheres; we define
� as the distance the swimmer translates in one complete
cycle.

A. Analytic theory

Because of the simplicity of the shape deformations of
the linear three sphere swimmer, it is possible to calculate
analytically the total net displacement, �, of the swimmer
during each complete cycle of its motion, in the limit of
��D and R�D. We summarize the argument of Najafi and
Golestanian7 and correct their formula for the displacement
of the swimmer, which we shall need for comparison to the
numerical results.

Each of the four steps of the stroke can, by a simple
transformation, be converted into one particular auxiliary
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stroke. In the auxiliary stroke one arm has a fixed length, �,
where � is either D or D−�, and the other arm changes
length from D to D−�. We choose the x axis to be parallel to
the line linking the spheres and directed away from sphere 2
�see Fig. 2�. During the auxiliary stroke v1=v3 and W=v2

−v1, and thus the velocity of the middle sphere, in the limit
that the swimmer undergoes small deformations, is

v1��� 	
− W�H11 − H23 − H12�

�3H11 − 2�H12 + H13 + H23��

	 −
W

3
�1 −

R

2�D − Wt�
+

R

�
−

R

2�� + D − Wt�� ,

�20�

ignoring terms of order �R /D�2 and greater. The elements of
the Oseen tensor for each pair of spheres follow from Eq.
�2�. Integrating Eq. �20� gives the displacement over the aux-
iliary stroke,

�a��� = �
0

�/W

v1���dt . �21�

This can then be used to calculate the total displacement
after the four step cycle, to second order in � /D, as

� = 2��a�D� − �a�D − ��� =
7

12
R� �

D
�2

+  �

D
�3� . �22�

We note here that this expression differs from that given
by Najafi and Golestanian7 who reported

� = 2.8R �

D
�3

. �23�

In Eq. �23� the displacement, �, is proportional to �� /D�3. If
one considers the transformation �→�=−� and D→G=D
−�, this corresponds to a swimmer undergoing exactly the
same continuous motion as that shown in Fig. 2, only with
the swimming stroke beginning at the third step in the cycle.
Thus, the swimmer must move in the same direction. How-
ever, Eq. �23� suggests that the swimming direction is re-
versed under this transformation, which is clearly incorrect.

In the following section, we summarize the results of
numerical simulation studies of the motion of the linear three
sphere swimmer at low Reynolds number in order to validate
and compare the use of these approaches in the study of
swimming microstructures.

B. Numerical results

Figure 3 gives the results for a single linear three sphere
swimmer, using each of the three methods presented in Sec.
II. This graph shows how the total displacement of the swim-
mer over one swimming cycle, �, varies as a function of the
amplitude of the stroke, �. The parameters used were
D=25 and R=3 for the Oseen tensor and lattice Boltzmann
approaches and D=3.0a for the multiparticle collision dy-
namics simulations.

The solid line in Fig. 3 is obtained by directly solving
the Oseen tensor interaction between the spheres, as outlined
in Sec. II A. The dashed line shows the theoretical curve, Eq.
�22�, which is correct to third order in � /D. These two curves
converge in the limit of small � /D, as expected. The dot-

FIG. 2. The four step, cyclic motion of the linear three sphere swimmer
�Ref. 7�.

FIG. 3. The shift per cycle of the linear three sphere swimmer, �, as a
function of the sphere displacement amplitude, �. The inset shows a mag-
nified view of the region of the graph below � /D=0.2. The parameters
D=25 and R=3 were used in the Oseen tensor and lattice Boltzmann ap-
proaches. In the multiparticle collision dynamics simulations we used
D=3.0a. The solid line was obtained by numerically solving the Oseen
tensor equation, outlined in Sec. II A. The crosses mark results obtained
from lattice Boltzmann simulations, presented in Sec. II B. The error bars
show the distribution of results using multiparticle collision dynamics from
Sec. II C. The dashed line is the theoretical expression given in Eq. �22� and
the dot-dashed line is the expression proposed by Najafi and Golestanian
�Ref. 7� reproduced in Eq. �23�.
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dashed line is Eq. �23�, the expression proposed by Najafi
and Golestanian.7 This appears to give good agreement for
larger values of � /D. This is misleading, however, as in the
limit of small � /D it does not converge to the theoretical
solution �this is seen most clearly within the inset�, and it
should not be valid at higher values of � /D due to the as-
sumptions made in the derivation.

The lattice Boltzmann simulations were performed using
a lattice of size Lx=200, Ly =100, and Lz=100, with periodic
boundary conditions. Initially, the swimmer was placed in
the middle of the box, aligned parallel to the x direction. The
relaxation parameter was chosen to be 
=1. The simulations
were run for one complete swimming cycle, which corre-
sponded to tmax=102 400�t time steps. The maximum speed
of spheres is approximated by 4� / tmax. Using this together
with R, which gives a characteristic length scale for the
problem, the Reynolds number can be expressed as
Re=4�R /�tmax. The largest displacement used ��=19� gives
Re=0.013. This was checked to be sufficiently low by run-
ning a limited number of simulations using tmax=204 800�t
time steps, and finding that these results agreed to within 1%.
Furthermore, we checked that finite size effects were not
important by performing simulations using a lattice of size
Lx=300, Ly =150, and Lz=150, with results again agreeing
within this tolerance.

The results from the lattice Boltzmann simulations are
denoted by the crosses in Fig. 3. They agree well with the
full Oseen tensor result �solid curve� at small � /D and devi-
ate as � /D gets increasingly large. This is because the Oseen
tensor approximation that the spheres are far apart breaks
down in this limit �the spheres intersect each other if � /D
�0.76 for the parameters used�.

Simulations using multiparticle collision dynamics are
intrinsically noisy. If we simply use a molecular dynamics
algorithm to solve the equations of motion for the swimmer
and include the particles that make up the swimmer in the
solvent collision step then, without further correction, the
microstructure will rotate, and not stay aligned along one
particular axis. Although this behavior would be realistic for
a nanoscale microstructure in a solvent, it does not easily
allow for an accurate comparison of swimming speed with
theory. To constrain the motion to one dimension, the trans-
verse velocities of the three particles that comprise the swim-
mer were adjusted to the average velocity of the particles
after each collision step. Changes in the arm lengths were
undertaken by adding an extra velocity to each particle, such
that the total momentum of the microstructure remained un-
changed during the arm length change.

For the multiparticle collision dynamics solvent we used
the following parameters: particle temperature kT=0.005,
time step �t=0.01, cell size a=1.0, rotation angle 	=135°,
average number of particles per cell =10, and particle mass
m=10. These result in a Reynolds number for the micro-
structure of �10−5. These parameters both ensure a low Rey-
nolds number and minimize fluctuations in the solvent with a
high Schmidt number. In our simulations, we employed a
simulation box of dimensions 30a�8a�8a with periodic
boundary conditions and checked for finite size effects. For
the swimmer we used a mass of 5m for each sphere. Due to

the nature of the swimmer-solvent interaction in our imple-
mentation of the multiparticle collision dynamics algorithm,
it is difficult to define the effective hydrodynamic radii of the
spheres. However, comparison with the Oseen tensor and
lattice Boltzmann simulation results suggests that the param-
eters used lead to R /D�0.12. The simulations were con-
ducted for a total time of tmax=2.72�105�t time steps, and
one period of motion took 6.8�103�t. The period must be
sufficiently long to allow the solvent to couple with the
swimmer. Twenty runs were performed for each parameter
set and the results are denoted by the error bars in Fig. 3,
which are spread one standard error on either side of the
average of the 20 runs. The results are compatible with, but
much less precise than, those obtained by the methods with-
out intrinsic fluctuations.

By changing the parameters, D and �, it is not only
possible to change the swimmer displacement, �, but also
the efficiency of the swimmer. We define this efficiency to be
the energy required for an external force to move the indi-
vidual spheres by the distance � in a time P divided by the
work done by the swimmer in performing the corresponding
cyclic shape change,

Efficiency =
6��N�2/P

�
i=1

N

� 0
PFi . vidt

. �24�

Using the Oseen tensor approach, the forces on the spheres,
Fi, are calculated through Eq. �6�, so this quantity is easily
obtainable. The line in Fig. 4�a� shows how the swimming
efficiency is changed as a function of �, while keeping
D=5R fixed. Note that this curve terminates when �=D

FIG. 4. The percentage efficiency of a linear three sphere swimmer as a
function of �a� the sphere displacement amplitude, �, for fixed D=5R, and
�b� the maximum arm length, D, for fixed minimum separation D−�=4R.
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−2R, since beyond this the spheres unphysically overlap at
some point within the swimming cycle. Furthermore, the
Oseen tensor method tends to overestimate the efficiency
when the spheres get close, because it does not include the
viscous dissipation resulting from lubrication effects. Figure
4�a� illustrates a general feature of swimmers, namely, that
small amplitude motion results in inefficient swimming. The
curve in Fig. 4�b� shows the efficiency against D, assuming a
fixed minimum sphere separation of D−�=4R. We find that
the swimmer becomes increasingly efficient as D increases,
approaching a limit of around 8%.

We now summarize the relative advantages and disad-
vantages of the three numerical methods. The Oseen tensor
approach is particularly advantageous for swimmers com-
prising small numbers of spheres because it is computation-
ally very fast �simulations taking only minutes instead of
days using lattice Boltzmann or multiparticle collision dy-
namics�. This is primarily because it is not necessary to ex-
plicitly solve a set of fluid dynamics equations. However, the
simulation time scales as N3 so lattice Boltzmann becomes
more efficient for large numbers of swimmers.

The Oseen tensor formalism is also limited because it
assumes that the interacting spheres are spaced far apart,
compared to their radii. This means, for instance, that it
would not be appropriate to use this method to study the
movement of a swimmer close to a wall or in a confined
geometry. On the other hand, the lattice Boltzmann algorithm
can address these problems, providing an exact solution to
any fluid flow problem given sufficient resolution. In practice
it is limited by computational power. To avoid spurious lat-
tice effects, the sphere radius must be significantly larger
than the lattice size, necessitating the need for large systems.
Moreover, to obtain a sufficiently low Reynolds number, the
cyclic swimming motion must be performed over a great
number of time steps, further increasing the computational
burden.

Multiparticle collision dynamics is advantageous be-
cause it is unconditionally stable, unlike the lattice Boltz-
mann method, and this allows somewhat lower Reynolds
numbers to be obtained more easily. One can also use a
molecular dynamics approach to treat the microstructure al-
lowing for great flexibility in the swimmer models it is pos-
sible to consider.

Additionally, as this method inherently contains noise it
will be appropriate for studying very small scale structures,
for which Brownian fluctuations are important. However, if
the fluctuations are unphysical the noise is undesirable, ne-
cessitating long time averages.

For the remainder of this paper, we concentrate on using
the Oseen tensor and multiparticle collision dynamics ap-
proaches to study more complex swimming motions.

IV. GENERALIZED THREE SPHERE SWIMMERS

The swimmer described in Sec. III is constrained to
move in one dimension along its axis. Using the same basic
elements one can design a number of other three sphere
swimmers that can move their individual components and
centers of mass in two or three dimensions. To extend the

original design we allow the angle between the two arms of
the swimmer to change.6 When the change in angle takes
place, the spheres may move radially with the arm lengths
constant, or the arm lengths may change at the same time,
thus allowing for a number of different motions. In Fig. 5 we
show one of the many possible alternative schemes of mo-
tion for swimmers of this type, which we will refer to as
generalized three sphere swimmers.

We first concentrate on the motion shown in Fig. 5 and
the case where the arms rotate at fixed length. If the
swimmer employs a symmetric motion with arm lengths
D12=D13 and �12=�13, the net translation of the swimmer is
along the x axis �defined in the figure�. Thus, the microstruc-
ture remains a one dimensional swimmer while its individual
elements are moving in two dimensions. Interestingly, the
direction that the microstructure translates varies with 	, for
fixed D and �, as shown in Fig. 6. For D=5R and �=2R the
outer two spheres do not intersect for 	�39°, and there is
a transition from backward motion to forward motion at
	=77°. Intuitively it is not obvious what causes this reversal
of direction. We found that the maximum efficiency of this
swimmer �with efficiency defined by Eq. �24��, occurs at
	=138°. This corresponds to an efficiency of 1.8%, which is

FIG. 5. Alternative cyclic motion for a three sphere swimmer, allowing the
microstructure to translate in two dimensions. Possible extensions to this
scheme include allowing the angle 	 to change as the arm lengths change.

FIG. 6. The position shift over one cycle, �, as a function of swimmer angle
	 for the swimmer defined in Fig. 5. Other parameters were D=5R and
�=2R.
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considerably less than the �8% found for the linear three
sphere swimmer in the previous section. It seems plausible
that the linear three sphere swimmer is the most efficient
three sphere swimmer possible.

If one instead defines an asymmetric motion, with D12

�D13 and/or �12��13, the microstructure will move its cen-
ter of mass in two dimensions. The swimmer rotates and
translates, as shown for D12=D13=6, �12=3 and �13 as vari-
able in Fig. 7. As the difference between �12 and �13 becomes
greater, the angular rotation about the center of mass of the
microstructure for each swimming cycle increases. Thus, it is
a relatively easy step to imagine a manufactured device that
can switch between symmetric and asymmetric cyclic mo-
tions, perhaps in response to an external stimulus or experi-
mental condition, to enable movement in a controlled fashion
in two dimensions. A three sphere swimmer that can change
the angle between its two arms could simply adopt the effi-
cient swimming motion of Sec. III, where 	=180°, to move
in a straight line, and then vary 	 to adopt a structure allow-
ing it to turn.

To extend the movement of such a microstructure to
three dimensions, the angle between the arms could be
changed along another plane, perpendicular to the original
one. One strategy to do this might be to employ a double-
jointed structure where the angle between the arms could be
changed from 	=180° in either of two perpendicular planes.
It is of interest that this microstructure is the first low Rey-
nolds number swimmer to be proposed theoretically that can
move in a controlled fashion in three dimensions, without
employing numerous one dimensional swimming devices
placed perpendicular to each other.

V. EXTENDED, LINEAR, ONE DIMENSIONAL
SWIMMERS

To extend the linear three sphere swimmer of Sec. III
one can simply add more spheres to the microstructure, the
simplest extension being the four sphere case. For the four

sphere microstructure shown in Fig. 8�i�, we analyzed
through Oseen tensor based numerical simulations all pos-
sible cyclic motions that are made up of a discrete number of
steps. At the end of each step the distance between neighbor-
ing spheres is either D �an extended rod� or D−� �a con-
tracted rod�. If a rod changes length during a step then it does
so at a constant speed W. In this analysis we allowed for
more than one rod length changing simultaneously.

Out of this subset of possible swimmers the swimming
strategy shown in Fig. 8 is the most efficient. This optimal
swimming strategy proceeds as follows: Starting from the
fully extended conformation, �i�, the distance between
spheres 1 and 2 is reduced to D−�, �ii�. In the next two steps
the distance between spheres 2 and 3 is reduced to D−�,
�iii�, and the distance between spheres 3 and 4 is reduced to
D−�, �iv�, the fully contracted conformation. The micro-
structure then sequentially extends, first by extending the dis-
tance between spheres 1 and 2 to D, �v�, then extending the
distance between spheres 2 and 3 to D, �vi�, and finally by
extending the distance between spheres 3 and 4 to D, com-
pleting the cycle and taking the conformation back to the
original starting configuration �i�. For the case D=5R and
�=2R, the four sphere microstructure using the optimal
swimming strategy has a swimming efficiency of 6.9% com-
pared to 4.5% for the three sphere swimmer using the same
parameters.

Extending to the five sphere case, we analyzed all pos-
sible cyclic swimming strategies using Oseen tensor based
numerical simulations, and found that the analogous swim-

FIG. 7. The angular change in the orientation of the generalized three sphere
swimmer over one complete swimming cycle, ��, as a function of the
swimmer displacement amplitude, �13. Other parameters were fixed to be
�12=3R and D12=D13=6R. The inset shows the movement of the center of
mass of the swimmer at a fixed point in the cycle, over the course of nine
swimming cycles.

FIG. 8. The most efficient cyclic swimming strategy for an extended, linear,
four sphere microstructure.
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ming strategy to that in Fig. 8 was optimal, resulting in a
swimming efficiency of 8.8% for the D=5R and �=2R
cases. We studied this optimal swimming strategy for micro-
structures with up to 200 spheres and the swimming effi-
ciency as a function of the number of spheres is shown in
Fig. 9. The curve indicates a logarithmic growth in the effi-
ciency as a function of sphere number. This would imply that
for a sufficiently large number of spheres the efficiency will
go above one. Although counterintuitive, from our definition
of efficiency in Eq. �24�, this is perfectly possible, and does
not violate any physical principle. However, as the number
of spheres is increased, the physical size of the spheres and
rods would have to be made proportionately smaller, to en-
sure that finite Reynolds number effects do not become im-
portant.

VI. FILAMENT SWIMMERS USING MULTIPARTICLE
COLLISION DYNAMICS

As an example of using multiparticle collision dynamics
to investigate a more complicated swimmer we consider the
motion of a filament modeled as beads connected by springs
and interacting through Lennard-Jones forces. The filament
is driven by a sinusoidally oscillating force applied at one
end. The model was motivated by the man-made micro-
scopic swimmer of Dreyfus et al. where a red blood cell is
attached to a filament consisting of superparamagnetic col-
loids that are connected to each other using DNA.1 Two
magnetic fields are used experimentally, one to align the fila-
ment and the other to actuate one end of it in a sinusoidal
manner. This actuation results in a series of waves, originat-
ing at the tail of the filament, propagating towards the red
blood cell at the head. Because the perpendicular and parallel
friction coefficients of the microstructure are not equal
��� /�� 	2�, a net translation, in the opposite direction to the
propagation of the wave, occurs along the alignment direc-
tion of the filament.

In the multiparticle collision dynamics simulation we
model the filament as a number of Lennard-Jones beads, rep-
resenting the superparamagnetic colloids, connected to each
other by finitely extensible nonlinear elastic �FENE� springs,
representing the DNA linkers. Instead of a magnetic field, we
simply apply an equal and opposite force to each end of the

filament to align it along an axis, and apply a sinusoidal
actuating force, perpendicular
to the aligning forces, to one end of the filament �see
Fig. 10�a��.

Lowe 32 proposed a dimensionless parameter to charac-
terize naturally flexible filaments, the “sperm number,” de-
fined as

Sp = L� �

���
�1/4

, �25�

where L is the length, � is the bending rigidity, �� is the
perpendicular friction coefficient for the filament, and � is
the angular frequency of the actuation or driving. For our
model filament in a multiparticle collision dynamics solvent
we calculate the bending rigidity from the change in energy
of the structure as a function of the curvature of the
filament.22 We determine the friction coefficients by applying
a known force to each bead, in a direction perpendicular or
parallel to the alignment, and measuring the resulting veloc-
ity of the microstructure �with no actuation�. We can then
measure how the velocity of the microstructure depends on
Sp by changing the angular frequency of the actuation.

For the multiparticle collision dynamics solvent we use
the following parameters: kT=1.0, �t=1.0, a=1.0, 	=120°,
=5, and m=4 resulting in a Reynolds number for the mi-
crostructure of �10−2. For the microstructure we use a mass
of 4m for each bead and a molecular dynamics time step of
0.002�t. The average distance between the centers of mass
of each bead is 	1.0a, and we use ten beads to represent
the filament. The simulations are conducted over
tmax=200 000�t solvent time steps, and we average the re-
sults over ten runs for each data point.

In Fig. 10 we show the swimming velocity of the micro-
structure, scaled by L�, as a function of Sp. As predicted by
theory for naturally flexible filaments,33 we observe a maxi-
mum in the scaled swimming velocity of the filament be-
tween the high �dominated by viscous friction� and low

FIG. 9. Percentage efficiency against the number of spheres for a micro-
structure adopting the swimming strategy depicted in Fig. 8.

FIG. 10. �a� Model filament used in the multiparticle collision dynamics
simulations. The filament is composed of Lennard-Jones beads that are con-
nected by FENE springs. An aligning force, Falign, is applied to both ends of
the filament, and a sinusoidal force, Factuate=Fmax sin��t�, is used to actuate
one end of the microstructure, leading to wave propagation from right to left
in the diagram. �b� Scaled swimming velocity as a function of the sperm
number for the flexible filament. To obtain this plot, Fmax is varied for
different frequencies of actuation such that the integral of Factuate over half of
the period is equal.
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�dominated by internal elasticity� Sp regimes. This repro-
duces the behavior demonstrated for the man-made swimmer
of Dreyfus et al.,1 and we also observe very similar scaled
speeds in our simulations to those found experimentally.

To verify that the filament in the simulations swims
through the mechanism of wave propagation, we also mod-
eled a two bead microstructure under the influence of align-
ing and actuating forces. We find that this microstructure
does not swim as it is impossible for a two bead filament to
move in a time irreversible fashion.

VII. CONCLUSIONS

In this paper we have described three different methods
for simulating low Reynolds number swimmers: An Oseen
tensor approach, lattice Boltzmann, and multiparticle colli-
sion dynamics. In Sec. III, each of these methods was used to
model a very simple, linear swimmer comprising three
linked spheres. Analytic results are available for this system7

and hence we were able to validate the approaches and iden-
tify the strengths and weaknesses of each method. For swim-
mers made up of a small number of spheres the Oseen tensor
approach is very fast. However, as the number of spheres
increases, or as multiple swimmers are considered, lattice
Boltzmann becomes more efficient. Moreover the Oseen ten-
sor does not accurately take into account short range hydro-
dynamic interactions. Lattice Boltzmann is able to deal with
spheres close to each other or to a surface, but at the expense
of an increasingly fine lattice resolution. We found that mul-
tiparticle collision dynamics is in general a less useful ap-
proach as the intrinsic noise tends to dominate the results.
This method will be of use when modeling nanoscale sys-
tems where fluctuations are an intrinsic component of the
physics.

Subsequently, in Sec. IV, we proposed a new three
sphere swimmer, which has the advantage of being able to
turn and control its trajectory in a three dimensional manner.
These ideas may be of use in the design and fabrication of
artificial microswimmers. Section V extended the one dimen-
sional three sphere swimmer aiming to search for the most
efficient swimming strategy for a larger number of spheres.
We found that the efficiency increases logarithmically with
the sphere number.

In Sec. VI, we modeled a filament swimmer that moves
due to the propagation of waves along its length. Using mul-
tiparticle collisional dynamics we were able to reproduce the
behavior observed experimentally.

There are many directions in which it would be fruitful
to pursue the simulations. We are currently considering in-
teractions between two or more swimmers, and it would be
of interest to consider the effect of boundaries and obstacles
on swimming behavior. Continuum hydrodynamic theories
have recently been proposed to describe concentrated solu-
tions of swimmers.34,35 These have led to results very sug-
gestive of swimming behavior but it is hard to pin down the
phenomenological parameters in the equations of motion.

Simulations of increasing numbers of swimmers are needed
to try to bridge the gap between the microscopic and con-
tinuum approaches.

There is enormous scope presented by more realistic bio-
logical problems such as the chemotactic responses of bac-
teria or random tumbling during a swimming cycle. More-
over simulations of this type may be important in designing
artificial microswimmers for applications as diverse as drug
delivery or mixing fluids within microchannels.
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